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Abstract

We show that firms strategically reduce their compliance effort when regulatory

stringency unexpectedly declines in short run. We analyze daily air emissions from

coal-fired power plants in the United States, using the Environmental Protection

Agency’s furlough during the 2018 – 19 federal government shutdown as a natural

experiment. Using an engineering-based approach we confirm that coal-fired power

plants increased daily particulate matter emissions during the furlough of Federal

employees by temporarily reducing end-of-pipe pollution control. At the same time,

consistent with our expectations, there is no detectable increase in daily emissions

of SO2 and NOX during the furlough, because they are continuously monitored and

the furlough did not represent a change in regulation stringency for these pollutants.
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1 Introduction

We analyze firm responses to unanticipated and temporary changes in environmental

regulation which may change unexpectedly in the short-term for exogenous reasons. For

instance, the United States Environmental Protection Agency (EPA) typically issues

No Action Assurances waiving specific regulations during emergencies caused by nat-

ural disasters such as hurricanes.1 Lapses in appropriation is another scenario where

the stringency and enforcement of regulations can be interrupted. Associated with gov-

ernment shutdowns, lapses in appropriations result in the furlough of employees and a

temporary halt in enforcement activities. As a consequence of these temporary policy

modifications, regulation becomes less stringent, offering opportunities for firms to be

temporarily non-compliant with regulatory policy without the threat of being penalized.

A large literature has studied firms’ responses to environmental regulation (Carlson

et al., 2000; Greenstone, 2002; Curtis, 2020; Gibson, 2019; Calel, 2020; Zhou et al., 2020).

In most cases, firms respond with adopting off–the–shelf pollution control technologies.

For example, when the EPA started the Acid Rain Program in 1995, a cap–and–trade

program to reduce SO2 emissions from fossil–fueled power plants, the installation of

scrubbers at electricity generating units increased by 50% between 1995 and 2002 (Chan

et al., 2018). Similar findings have been reported under the NOX Budget Trading Pro-

gram, which also regulates stationary sources of emissions since 1999 (Linn, 2008; Fowlie,

2010). Technological innovation is another response to environmental regulation. For

example, Calel (2020) finds that the European Union’s Emission Trading System encour-

aged firms to innovate low–carbon technologies, but had little effect on the adoption of

existing abatement technologies.2 In addition to technological responses, firms often ini-

tiate environmental management plans in reaction to (anticipated) changes in regulation.

These self–motivated compliance efforts typically include decentralized and voluntary

self–regulation plans aimed at improving environmental performance and eventually low-

ering the likelihood of being inspected or penalized for poor performance (Khanna and

Damon, 1999; Li and Khanna, 2018).

Different from long term adaptation, in the short run firms rely exclusively on existing

1For example, to minimize problems with the supply of gasoline due to Hurricane Florence in 2018,
EPA waived the federal requirements for the Reid vapor pressure test (a standard measure of the volatility
of liquid fuels) for fuel sold in designated areas in North Carolina, South Carolina, Georgia, and Virginia.
Archived responses to Hurricane Ida, Laura, Michael, Florence, Harvey, Irma, and Maria are available
at: https://www.epa.gov/hurricane-response.

2This is in line with the Porter Hypothesis: strict environmental regulation motivates firms to in-
novate, which ultimately improves firm competitiveness and profitability (Porter and Van der Linde,
1995). Similar findings have been reported in several other studies (Jaffe and Palmer, 1997; Popp, 2006;
Arimura et al., 2007; Johnstone et al., 2010; Lanoie et al., 2011; Taylor, 2012). Popp (2019) provides a
comprehensive review of environmental policy and innovation.
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technologies and operation methods to comply with changes in regulation or regulation

stringency. Zou (2021) shows that firms are able to strategically change their emissions

on a daily basis in response to planned changes in EPA’s monitoring of particulate matter

concentrations. The question that remains unanswered is whether firms make strategic

short–term changes in emissions and abatement behaviors in response to unanticipated

regulation shocks. We focus on the 2018–19 U.S. federal government shutdown, and ask

the empirical question whether and to what extent coal–fired power plants, among the

most highly regulated entities in the U.S., emitted more pollutants during the shutdown.

The 2018–19 federal government shutdown lasted from midnight on December 22, 2018,

through January 25, 2019, in total 35 days, making it the longest federal government

shutdown in U.S. history. Among many other impacts, we expect the impact on envi-

ronmental quality to be significant because federal EPA employees did not carry out any

duties during the shutdown, including pollution inspection and monitoring.3 According

to the EPA contingency plan both before (September 25, 2018) and during (December

31, 2018) the 2018–19 shutdown, the shutdown activities were accomplished within only

4 hours, shrinking the total number of active agency employees from more than 14,000 to

less than 1,000; roughly 95% of Agency staff were furloughed.4 None of the employees re-

tained during the shutdown were engaged in inspection and enforcement activities. Thus,

the EPA’s furlough during the most recent U.S. federal government shutdown provides

an exogenous short–run shock in environmental regulation, allowing us to study firms’

short–run strategic behavior in response to an unanticipated and temporary change in

regulation stringency.

Our empirical strategy is motivated by a theoretical model based on Maxwell and

Decker (2006) in which a representative firm chooses its environmental effort to minimize

the overall cost of emissions, which is determined as the sum of the expected violation

penalties and the cost of environmental effort. The model indicates that a negative shock

that weakens the stringency of regulation reduces the probability of being inspected by

the regulator. Firms invest less environmental effort and release higher emissions in

response to the lower probability of being inspected and triggering a pollution violation.

We implement a difference–in–differences framework to estimate the causal impact of

the 2018–19 U.S. federal government shutdown and the subsequent furlough of federal

EPA employees on coal–fired power plants’ emissions. Because the government shutdown

applied universally to all coal–fired power plants in the U.S., there is no clearly defined

3https://epa.gov/sites/production/files/2018-12/documents/agency shutdown faqs 12282018.pdf
4U.S. EPA Contingency Plan for Government Shutdown: https://www.epa.gov/sites/production/files/2018-

12/documents/epa contingency plan december 18 2018 508.pdf. Two other agencies that were severely
affected is the National Science Foundation (99% employee furloughed) and NASA (95% employee
furloughed). Unlike the NSF and NASA, the EPA undertakes inspection and enforcement actions.
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contemporaneous control group available for estimating the counterfactual. Hence, we use

emissions from the same coal–fired power plants on the same dates during the previous 5

years, 2013–14, 2014–15, 2015–16, 2016–17, and 2017–18, to generate the counterfactual

2018–19 emissions.

The short time span of the shutdown (EPA furlough) treatment poses a particularly

challenging problem for our study because most emissions data are reported on an annual

or monthly basis. To overcome this empirical difficulty, we use several high frequency

data sources including the EPA’s Air Markets Program Data (AMPD) and satellite–

based Aerosol Optical Depth (AOD). AMPD provides daily power plant emissions of

sulfur dioxide (SO2), nitrogen oxides (NOX), carbon dioxide (CO2), daily heat input and

daily electricity and steam production. The satellite–based AOD data correlate with

daily particulate matter concentration in the areas surrounding power plants.

We focus on SO2, NOX , and particulate matter emissions and test whether the gov-

ernment shutdown caused empirically detectable changes in their emissions. We expect

that the shutdown had a heterogeneous effect on the regulation stringency of these pol-

lutants. Specifically, SO2 and NOX are continuously monitored via devices at individual

generating units at each plant under the Acid Rain Program and NOX Budget Trading

Program. Hence, the temporary furlough of federal EPA inspectors had no appreciable

effect on the stringency with which these two pollutants are regulated and plants had a

negligible incentive to strategically reduce the emissions of these pollutants during the

furlough. In contrast, fine particulate matter emissions are not continuously monitored

on-site at individual plants. Instead, the EPA monitors the ambient concentrations of

PM10 and PM2.5 at roughly 1,200 monitoring sites across the country. These monitors use

filters and require manual operation including routine field sample collection Zou (2021).

In addition, EPA inspectors may visit individual polluters for on-site stack tests. Hence,

the furlough of EPA employees represents a tangible reduction in the stringency of par-

ticulate matter regulation and enforcement. This hiatus in enforcement related activities

during the furlough offered plants the opportunity to strategically reduce their compliance

effort and increase their particulate matter emissions. Consistent with out expectations,

our empirical results provide evidence that during the government shutdown, coal-fired

power plants temporarily reduced end-of-pipe particulate matter pollution control during

the government shutdown, significantly increasing their PM emissions. However, we find

no evidence of the increase in SO2 and NOX emissions during the government shutdown.

The paper proceeds as follows. In section 2, we present the theoretical model outlining

how regulation shocks affect a firm’s environmental effort in pollution abatement as well

as its emission levels. In section 3 we present our empirical identification strategy and

data details. Section 4 describes our data. Section 5 reports the baseline empirical results
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and assesses the robustness of these results. In section 6, we identify the factors driving

our results. We conclude our paper in section 7.

2 Conceptual Motivation

We consider a setting similar to Maxwell and Decker (2006) to model a firm’s response

to changes in regulation. We assume a representative firm chooses its compliance effort

to minimize the expected cost of compliance, which is the summation of expected penal-

ties from being inspected with violation and the cost of compliance efforts. Compliance

effort lowers the probability of triggering a violation. We assume that in the short–run

(i) firms take the probability of being inspected and the associated violation penalties as

determined by the regulator and exogenous to their contemporaneous compliance behav-

ior;5 and (ii) firms are not able to change their long–run characteristics by adopting new

compliance or production technologies and managerial skills.

Consider that a firm chooses its compliance effort x, such that the probability of

compliance is p(x) ∈ [0, 1]. p(x) increases with x at a decreasing rate (an increasing and

concave function of x). 1 − p(x) is the probability of violation. The cost of compliance

effort is g(x; θ). θ is the firm’s characteristics, and g(θ, x) is an increasing and convex

function of x. Let m ∈ [0, 1] be the probability that the firm will be inspected by the

regulator, and f be the penalty if violations are found during the inspection. We define

a shock in regulation as an exogenous change in m. We assume the regulator is not able

to strategically change inspection probabilities and violation penalties in response to the

firm’s compliance performance in the short-run, and the firm cannot strategically change

its characteristics. That is, we assume that m, f and θ are exogenous and taken as given

by the firm.

The firm’s objective is to choose its compliance effort so as to minimize the expected

total cost of regulation:

min
x

E(C) = (1− p(x))mf + g(θ, x) (1)

The firm chooses the optimal compliance effort x∗ = x∗(m, f, θ) according to the first

order condition:

mf
∂p(x∗)

∂x∗
=
∂g(θ, x∗)

∂x∗
, (2)

where the marginal benefit of the firm’s compliance effort, represented by the expected

reduction in violation penalties (left-hand side of the equation 2) equals the marginal cost

of increasing compliance (right-hand side of the equation 2). The optimal compliance

5Examples include OSHA inspections on workplace safety or EPA inspections on pollution abatement.
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effort x∗(m, f, θ) increases in both the likelihood of being inspected (m) and the violation

penalty (f), since they each increase the marginal benefit of compliance effort.6

3 Power Plant Emissions during the Federal Govern-

ment Shutdown

Our theoretical framework implies that firms strategically change their compliance effort

when faced unanticipated lenience in environmental regulation. We test the empirical

validity of this implication by examining power plant emissions during the 2018–19 federal

government shutdown. In the U.S., power plant emissions are regulated under the Clean

Air Act (CAA), which is enforced by the U.S. EPA and local environmental authorities

via on–site inspections, continuous on–site monitoring, and other strategies. During the

2018–19 federal government shutdown, the EPA adopted its contingency plan to furlough

about 95% of federal employees, thereby suspending inspection activities. Therefore,

the EPA furlough had the effect of exogenously lowering the environmental regulation

burden in the short–run, and offers a natural experiment to examine firms’ response to

the unanticipated shocks in regulation.

To apply the theoretical framework to the federal government shutdown, consider a

power plant with emissions level e(x; θ), where θ and x denote the plant’s characteristics

and compliance effort, respectively. Emissions are negatively associated with compliance

effort, i.e., e(x; θ) is a decreasing function of x, and a negative shock in environmental

regulation (i.e., a decrease in the probability of being inspected) decreases the firm’s

compliance effort and increases its emissions. That is, ∂e(x∗(mt,ft,θ);θ)
∂mt

< 0.7 This property

leads to our testable hypothesis: During the U.S. federal government shutdown (EPA

furlough), coal-fired power plants increased their air emissions.

3.1 Power plant emissions under the Clean Air Act

The CAA has played a critical role in improving air quality in the U.S. since it was first

enforced by the EPA in 1970. Under the CAA, the EPA established national ambient

air quality standards (NAAQS) for six criteria pollutants (PM, O3, SO2, NOX , CO, and

lead), and requires states to take enforceable actions to meet the air quality standards.

Over nearly 50 years, the combined emissions of these six common pollutants dropped by

77% (https://www.epa.gov/air-trends). This progress is partly attributed to the Clean

Air Act Amendment (CAAA) in 1990. This amendment introduced a cap on the total

6See proof in Appendix A.1.
7We remain agnostic about the curvature of e(θ;x).

6

https://www.epa.gov/air-trends


amount of SO2 and NOX emissions that can be emitted by power plants nationwide.

Under such cap–and–trade programs, power plants have incentives to increase abatement

when their abatement cost is less than the market price of allowances. Given the stringent

air regulations that the power plants face, any interruption or relaxation of the CAA

enforcement by the EPA would encourage power plants to raise emissions in order to

seize immediate albeit temporary benefits.

3.2 Empirical identification

The timeline for the EPA’s furlough was slightly different from the official shutdown

period, as the EPA used its available funds to maintain regular operations for one addi-

tional week, and reopened on the Monday after the weekend when the federal government

announced the end of the shutdown. Thus the EPA employee furlough extended from

December 29, 2018, to January 27, 2019, 30 days in total, which was the time period

during which coal-fired power plants experienced an unanticipated decrease in regulation

stringency.

Since the federal government shutdown was a universal event for all power plants,

there is no obvious contemporaneous counterfactual measurement. Instead, we use emis-

sions from the same group of power plants, but from different points in time to generate

their own counterfactual measurements. The underlying assumption is that, conditional

on observable confounders, the daily trend in power plant emissions does not vary dra-

matically year by year. However, a single past year of data might deviate from the trend

in the shutdown year due to randomly occurring though unobserved events, so we use the

previous 5 years data to smooth out any abnormalities. To be specific, we use the average

emissions on the same month-day (December 29–January 27) from the previous 5 years

(2013–14, 2014–15, 2015–16, 2016–17, 2017–18) to obtain counterfactual measurements.

For simplicity, we refer to December 29–January 27 in every year of our data as the

furlough days; 2018–19 as the shutdown year; and 2013–14, 2014–15, 2015–16, 2016–17,

2017–18 as the previous 5 years.

We compare emission outcomes before and during the furlough days, between the

shutdown year and the previous 5 years in a difference-in-differences framework. In our

full sample, we use data on a daily frequency from October 22 to January 27, giving us

14 weeks in total including 68 days prior to the EPA’s furlough and 30 furlough days.

We do not acquire data from earlier dates before October 22 because: earlier months are

associated with different seasonal patterns in both air pollution and electricity usage that

may weaken the validity of our model.8 Our benchmark model reads as follows:

8For example, Zhang et al. (2021a) find a strong seasonal pattern in particulate matter pollution.
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Yijt = αXijt + βDijt + Planti ×Weekst + Yearj + Weekdaysjt + Datet + Planti + εijt. (3)

where i is the plant index, j is the year index, and t is the date index (month–day of each

year). Yijt is daily emissions. Dijt is the shutdown dummy with Dijt = 1 if the observation

falls between December 29, 2018 and January 27, 2019, and Dijt = 0 otherwise. Xijt is

vector of the time–varying covariates including daily weather variables and electricity and

steam generation.9

In addition to Xijt, we include a series of fixed effects to ensure that the remaining

variation in the outcome variables is solely due to the EPA’s furlough, allowing us to

isolate β as the causal impact of the furlough on the outcome variable. The plant fixed

effect (Planti) captures time invariant plant specific characteristics. The days of week

fixed effect (Weekdaysjt) captures the variation in electricity demand or other social

economic activities across the days of the week.10 The date (month-day of each year)

fixed effect (Datet) is the time fixed effect, capturing the average time trend on a daily

basis across different years. The year fixed effect (Yearj) captures both the differences

across years and the intercept difference between the treated group and the control group.

In addition, our model includes a plant-by-week fixed effect (Planti×Weekst), allowing a

plant-specific time trend on a weekly basis. The definition of week is based on 2018–19,

from Monday to Sunday.11

4 Data

4.1 Data description

We create a plant–by–day data set that includes coal-fired power plants in the continental

U.S. Compiled from multiple data sources for each power plant, we obtain daily informa-

tion on air emissions, aerosol concentration surrounding each power plant, operational

information, and weather.

The list of coal–fired power plants is extracted from the U.S. Energy Information

Administration (EIA), including the Annual Electric Generator Report (EIA-860); the

Monthly Update to Annual Electric Generator Report (EIA-860M); and the Power Plant

Operation Report (EIA-923) (https://www.eia.gov/electricity/data/browser/). As of

9We use the level of emissions instead of natural log because the engineering relationship between
emissions and is expected to be linear.

10Electricity demand is generally lower on weekends than it is on the weekdays because many busi-
nesses are closed and less electricity is demanded for lighting and electronic equipment.

11The starting date of our sample, October 22, 2018, is a Monday.
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April 2019, 303 out of 9,047 power plants in the lower 48 states use coal as their pri-

mary fuel source, out of which 233 are pure coal-fired power plants, with coal as the only

fuel source.12

We obtain daily emissions and operational data from the EPA’s Air Market Program

Data (AMPD) under the Clear Air Markets program. The AMPD provides extensive

daily data on power plants with capacity greater than 25 megawatts. The data we collect

includes electricity generation, steam production, heat input, as well as air emissions of

SO2, NOX , and CO2.
13 The daily emission data for SO2 and NOX are recorded by a

continuous emission monitoring system and a flow monitoring system installed in each

coal–fired unit, as required by EPA federal regulation code.14 We were able to obtain

data for 204 out of the 233 coal–fired power plants over our study period: October 22 to

January 27, of the shutdown year (2018–2019) and the previous five years (2013–2014;

2014–2015; 2015–2016; 2016–2017; 2017–2018). Figure 1 shows the location of the power

plants in our sample.

Figure 1: Location of coal-fired power plants

Another primary outcome variable of interest is the concentration of aerosols sur-

rounding each power plant, as it correlates with fine particulate matter emission from

12Although the number of coal–fired power plants is relatively small, they usually have very high
capacity. In 2019, coal accounts for 23.4% of the total electricity generation in U.S., which is the second–
largest source for electricity after natural gas.

13We do not use CO2 as our primary outcome variables because CO2 emissions are not currently sub-
ject to regulation. However, we use CO2 emissions and heat input to identify the mechanism underlying
the effects of the government shutdown on the three targeted pollutants. See section 6.

14https://www.ecfr.gov/, see title 40, chapter I, subchapter C, part 75.10. Not all coal-fired power
plants are required to install the continuous emission monitoring system (title 40, chapter I, subchapter
C, part 75.2).
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the power plants. We take advantage of NASA’s satellite based measurements of AOD, a

high-frequency and high resolution measure retrieved by the Moderate Resolution Imag-

ing Spectroradiometer (MODIS) on NASA’s satellites. The literature has shown that

AOD is a good predictor of PM of different sizes: PM2.5 (diameter < 2.5µm) and PM10

(diameter < 10µm) (Liu et al., 2004; Donkelaar et al., 2016).15 Higher AOD indicates

higher PM pollution.16 Following Zhang et al. (2021b), we measure the aerosol concen-

tration as an area–weighted average AOD in a circular area of 3 km radius around each

power plant.

Our data also includes daily measurements for the following weather variables: precip-

itation, temperature, dew point, and wind speed. These variables are included as control

variables in our regression model because they account for the correlation between weather

conditions and electricity production. Weather may also affect the moisture level of coal,

which further affects the heat content and thus emissions (Chandralal et al., 2014). Fi-

nally, the weather variables are included in order to remove any confounding effects of

weather on aerosol concentration and weather (Kumar et al., 2007; Foster et al., 2009;

Zhang et al., 2021b).

We collect the daily precipitation, temperature, and dew point data from Parameter–

elevation Regressions on Independent Slopes Model (PRISM), a spatial climate database

(http://prism.oregonstate.edu). PRISM data are available at a spatial grid of 4 km2,

which is comparable with the spatial resolution of the AOD data. We extract daily

wind data from the National Centers for Environmental Prediction (NCEP)-U.S. Depart-

ment of Energy (DOE) Reanalysis II (NCEPRII) (https://www.esrl.noaa.gov/psd/dat-

a/gridded/data.ncep.reanalysis2.html). These data are at a resolution of 2.5 degree in

latitude and longitude. We assign wind speed and direction to each power plant depend-

ing on the 2.5 degree square the power plant is located in.

Table 1 summarizes all of the key variables by year in the first 6 columns, and for

the whole sample in the last column.17 On average, we observe a declining trend in

SO2, NOX and CO2 emissions. AOD is also declining, though it rises in 2018-19. Elec-

tricity production and heat input decrease from 2013–14 to 2015–16, but rise back and

stay stable from 2016–17 to 2018–19. Except for wind speed, the weather variables

15AOD, or aerosol optical depth, measures the degree to which aerosols prevent transmission of light
by absorption or scattering of light through the entire vertical column of atmosphere from ground to
satellite sensors. AOD is a unit–less measure.

16When using AOD to predict PM2.5, there is a slight downward bias when the AOD/PM2.5 concen-
tration is high (Fowlie et al., 2019).

17The number of AOD observations (N=35,559) is much smaller than the number of observations for
other pollutants (N=163,998). This is because the accuracy of the AOD measurement can be affected
by cloud and snow covers, and MODIS excludes all unreliable AOD observations. We also conduct
event studies using the short sample, and find that there are no significant group differences during the
pre–treatment period for all three pollutants.
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Table 1: Descriptive Statistics

Subsample by Year Full Sample

2013-14 2014-15 2015-16 2016-17 2017-18 2018-19 2013-19

SO2 (tons) 24.26 19.90 14.18 14.06 14.11 13.96 16.91
(39.11) (35.86) (22.48) (19.45) (20.20) (21.22) (28.21)

NOx (tons) 15.91 13.85 11.17 11.80 11.23 11.14 12.59
(17.27) (15.52) (12.59) (13.06) (11.80) (11.73) (14.02)

AOD (unitless) 0.13 0.12 0.11 0.11 0.11 0.12 0.12
(0.15) (0.12) (0.12) (0.14) (0.12) (0.14) (0.13)

CO2 (1,000 tons) 17.63 16.20 13.71 15.54 15.46 15.66 15.73
(15.11) (13.80) (12.47) (13.74) (13.41) (13.61) (13.78)

Electricity Production (gWh) 17.06 15.68 13.05 14.90 14.86 15.09 15.14
(15.63) (14.22) (12.74) (14.10) (13.88) (13.97) (14.19)

Steam Production (106 lbs.) 4.45 3.95 3.63 3.68 3.83 3.45 3.84
(18.47) (17.54) (14.19) (14.12) (15.24) (14.18) (15.80)

Heat Input (103 mmBtu) 170.07 156.37 132.68 150.11 149.53 151.36 151.99
(143.65) (131.66) (118.63) (130.66) (127.59) (129.56) (131.19)

Precipitation (mm) 2.00 1.89 2.81 1.92 2.14 2.85 2.26
(6.42) (5.66) (8.85) (5.61) (6.52) (7.60) (6.87)

Temperature (◦C) 0.81 1.91 4.77 4.78 2.46 1.98 2.75
(8.68) (8.33) (8.01) (8.51) (8.48) (7.87) (8.46)

Dew Point (◦C) −5.07 −3.96 −1.06 −1.37 −3.71 −2.58 −3.00
(8.57) (8.34) (8.43) (8.65) (8.80) (8.03) (8.60)

Wind Speed (m/s) 5.50 5.27 5.59 5.69 5.49 5.19 5.46
(2.83) (2.72) (2.97) (2.94) (2.81) (2.81) (2.86)

Number of Plants 200 202 203 200 198 197 204
Number of Observations
(SO2 & NOx Sample) 29,282 28,641 27,031 26,596 26,431 26,017 163,998
Number of Observations
(AOD Sample) 6,052 5,726 6,135 6,819 6,121 4,706 35,559

Note: The first five columns report the summary statistics for plant-by-day observations in each single
year. The last column reports the summary statistics for plant-by-day observations for whole sample
including all years. The reported number is the mean, with the standard deviation in parenthesis.

vary substantially across years but are consistent with the national weather pattern

(https://www.ncdc.noaa.gov/ca-g/national/time-series). Figure 2 shows the sample av-

erage annual trends for SO2, NOX and AOD, and compares them with the national trend

for the corresponding pollutant concentrations.18

18Sample data is for 2013–14, 2014–15, 2015–16, 2016–17 and 2017–18. National data is for 2013,
2014, 2015, 2016, 2017 and 2018.
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Figure 2: Trends in air pollution

(a) SO2 annual trend (b) NOx annual trend

(c) PM2.5/AOD annual trend

5 Results

5.1 Evaluating the identifying assumptions: event studies

Our key identifying assumption is that the emissions in the previous 5 years provide

an appropriate counterfactual for emissions in the shutdown year as if there were no

government shutdown. Given that we observe 197 out of 204 power plants in every year

of our sample, an advantage of our study design is that it is plausible to assume emissions

in the shutdown year (treatment group) and the previous 5 years (control group) are

similar in both levels and trends over the same month–day after controlling for electricity

generation and other confounders.

Following recent wisdom, we use event studies to provide evidence regarding the valid-

ity of our control group and the underlying assumption of a common trend. Specifically,

we estimate the conditional weekly average differences between the shutdown year and

the previous 5 years throughout our sample period using the following regression:

Yijt = αXijt + Planti ×Weekst + Yearj + Weekdaysjt + Datet (4)

+
∑
k 6=9

(λk × 1[Groupj = Treated]× 1[Weekst = k]) + εijt.
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In the regression, i, j, t and Xijt have the same definitions as in Equation 3. We first

estimate equation 4 using our full sample, so k is a sequence of integers between 1 and

14, as we have 14 weeks in the full sample. The shutdown treatment starts from the 10th

week (the week that ends on December 30). Following the conventional design of event

study analysis, we set the week before treatment, the 9th week, as the reference week (in

the summation term, k 6= 9). The coefficient of the interaction term [Groupj = Treated]×
1[Weekst = k], λk, captures the weekly average differences in daily emissions between the

treatment group (the shutdown year) and the control group (the previous 5 years) in week

k, conditional on the control variables and the fixed effects. An insignificant λk suggests

that after accounting for the intercept difference and other observable differences, there

is no additional weekly average difference in the daily outcome variable between the

treatment and control groups in week k. To visualize the weekly average differences in

daily SO2, NOX , and AOD between the two groups, we plot λk in Figures 3a, 3b, and 3c,

along with the 95% confidence interval. Standard errors are clustered at the plant level.

The event study results using full sample in Figure 3) support our choice of the

previous years as a credible control group: most of the group differences are statistically

insignificant during the pre-treatment periods. The only exceptions are found in the case

of AOD where two out of the nine pre-treatment group differences are significant. Other

than that, the results show a weak and insignificant pattern of increased SO2 emissions

due to the lockdown; no pattern for NOX emissions; and a strong and significant pattern

of increased AOD after the lockdown. These results are in line with our expectation since

particulate matter emissions experienced the largest reduction in regulation stringency

reduction.

To avoid potential bias induced by the two pre-treatment weeks with significant group

differences for AOD in the following analysis, we consider an alternative short sample

starting from December 1.19 The shorter sample also mitigates potential issues of sea-

sonality in the data.20.

5.2 Main results

Table 2 reports the causal effects of the EPA furlough on daily SO2, NOX and AOD using

both the full and short samples. For each regression, we report unclustered standard

errors along with standard errors that are clustered at either the plant or the state

level to account for potential correlations between observations within the plant or state

group. At best, we find weak evidence of an increase in daily SO2 emissions during the

19The short sample uses the same week labels as the full sample. It consists of 9 weeks, starting from
the 6th week that only have its last 2 days (December 1 and December 2).

20The event study analysis using the short sample is provided in Appendix Figure A1
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Figure 3: Event Study, Full Sample

(a) SO2 Emissions

(b) NOX Emissions

(c) AOD Concentration
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Table 2: Results: main analysis

Full Sample Short Sample

(1) (2) (3) (4) (5) (6)

SO2 (tons) NOX (tons) AOD (unitless) SO2 (tons) NOX (tons) AOD (unitless)

EPA Furlough 0.445 0.094 0.018 0.774 0.156 0.022
(0.278) (0.104) (0.005)∗∗∗ (0.344)∗∗ (0.126) (0.006)∗∗∗

(0.550) (0.207) (0.008)∗∗ (0.533) (0.201) (0.009)∗∗

(0.521) (0.250) (0.008)∗∗ (0.479) (0.230) (0.010)∗∗

Control Variables
Weather, Electricity
& Steam Production Y Y Y Y Y Y

Fixed Effects
Year, Date, Weekdays Y Y Y Y Y Y
Week × Plant

Adjusted R2 0.707 0.843 0.151 0.693 0.845 0.189
Sample Size 104,282 104,282 24,310 63,528 63,528 11,274

Note: The full sample consists of the pre-furlough period from October 22 to December 28 and the furlough period from
December 29 to January 27 of the shutdown year and the previous 5 years. The short sample consists of the shorter
pre-fought period from December 1 to December 28 and the furlough period from December 29 to January 27, in the
shutdown year and the previous 5 years. We report three standard errors for each coefficient: the first is the standard
error without clustering, while the second and the third standard errors are clustered at the plant and the state level,
respectively. The full results are reported in Appendix Table A1. Significance level: ∗∗∗ p< .01, ∗∗ p<.05, ∗ p<.1.

shutdown: the estimated coefficient is statistically significant only when the standard

errors are not clustered in the short sample shown in column (4). Similarly, we do not

detect a statistically significant change in daily NOX emissions as shown in columns (3)

and (5), although the coefficients on the EPA furlough dummy variable are positive. In

contrast, the results in columns (3) and (6) show that the daily AOD surrounding the

plants significantly increased by about 0.018 – 0.022, which is 15.43% – 19.53% above the

counterfactual on average (as if there was no regulation shock).21 Thus, our results suggest

that during the government shutdown, coal–fired power plants significantly increased their

particulate matter emissions due to the EPA’s furlough. Although daily plant emissions

of SO2 and NOX also appear to be relatively higher during the shutdown, representing

a 2.63% – 4.58% increase for SO2 and a 0.75% – 1.24% increase for NOX (compared to

sample average), these effects are not statistically significant. These results are consistent

with our hypothesis as well as the event study analysis reported in subsection 5.1.

The negligible effects of the EPA furlough on SO2 and NOX emissions might be driven

by two factors. The first factor is related to the SO2 and NOX trading programs, which

were unaffected by the government shutdown so that the abatement incentive provided by

the trading programs remained in place.Second, under the CAA SO2 and NOX emissions

are measured by a Continuous Emissions Monitoring System (CEMS), which operates 24

hours a day and is usually installed in an exhaust system or smoke stack through which

21This value is calculated as a percentage: (observed AOD - counterfactual AOD)/counterfactual
AOD. The conterfactural AOD is the estimated AOD as if there is no EPA furlough during the true
EPA furlough period.
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the majority of a plant’s air emissions pass (U.S. General Accounting Office, 1990). Such

plant–level continuous monitoring was unaffected by the furlough of EPA employees.

Therefore, the shutdown did not affect the regulation stringency for SO2 and NOX to

the same extent as particulate matter, and plants had a lower incentive to strategically

increase their SO2 and NOX emissions.

In addition to inspections and enforcement actions, the EPA also designates counties

as being in attainment or not with the NAAQS. The designation is made annually and

non-attainment has significant implications for local governments that must file State Im-

plementation Plans outlining strategies to reduce the concentrations of the violating pol-

lutants, including source–specific requirements. Thus non–attainment counties face ad-

ditional scrutiny compared to attainment counties (Henderson, 1996). To assess whether

county non–attainment status plays a role in the change in emissions during the furlough,

we re–estimate our benchmark model after separating plants into two groups based on

the attainment designation of the county in which they are located. We obtain the an-

nual attainment status for counties where the coal–fire power plants are located from the

EPA Greenbook (https://www.epa.gov/green-book). We designate a county as being

in non–attainment when at least one criteria pollutant fails to meet the corresponding

NAAQS, either wholly or partially. We have 26 plants located in non–attainment coun-

ties and 152 plants located in attainment counties. The remaining 26 plants are not

used for this part of the analysis because their counties switch attainment status at least

once between 2013 and 2019. In the regression model, we include two treatment effects

associated with the shutdown: one for plants in non-attainment counties and the other

for plants in attainment counties.22

As shown in Tables 3, the strategic response of plants in non–attainment counties is

either absent or sufficiently muted so that there is no detectable change in the emissions of

all three pollutants during the furlough. In contrast, it appears that the increase in AOD

reported in Table 2 is driven by the response of plants located in attainment counties.

5.3 Robustness checks

The causal interpretation of our findings may be challenged if there was a contempo-

raneous incident around the time of the EPA’s furlough that contributed to coal–fired

power plants’ emissions. Consider the following two cases: (i) an unrelated incident oc-

curred during the EPA’s furlough that increased coal–fired power plants’ emissions in

22We also estimate an alternative model with the EPA furlough dummy and the interaction between
the EPA furlough and a non-attainment dummy. The results are shown in Appendix Table A3. Since
we have very few plants in non-attainment counties, the model does not have enough power to reject the
null hypothesis that there is no difference in the effect of EPA furlough due to county attainment status.
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Table 3: Additional results: Attainment vs non-attainment counties

Full Sample Short Sample

(1) (2) (3) (4) (5) (6)

SO2 (tons) NOX (tons) AOD SO2 (tons) NOX (tons) AOD

EPA Furlough −7.066 0.422 0.078 −6.618 0.501 0.087
(Non-attainment Counties) (6.783) (1.323) (0.054) (6.435) (1.276) (0.055)

EPA Furlough 1.255 0.188 0.010 1.758 0.268 0.015∗∗

(Attainment Counties) (1.049) (0.239) (0.007) (1.393) (0.271) (0.007)

Control Variables
Weather, Weekdays,
Electricity & Steam Prod. Y Y Y Y Y Y

Fixed Effects
Year FE, Date F.E.,
Week × Plant F.E. Y Y Y Y Y Y

Adjusted R2 0.684 0.840 0.161 0.677 0.842 0.213
Sample Size 91,508 91,508 21,245 55,738 55,738 9,785

Note: In this sample, there are 26 plants in non-attainment counties, and 152 plants in attainment coun-
ties. The full sample consists of the shorter pre-furlough period from October 22 to December 28 and the
furlough period from December 29 to January 27, each year in the shutdown year and the previous 5 years.
The short sample consists of the pre-fought period from December 1 to December 28 and the furough pe-
riod from December 29 to January 27, in the shutdown year and the previous 5 years. All the regressions
include the following control variables: weather, electricity and steam production; and fixed effects: year
FE, date FE, weekdays, week × plant FE. The standard errors are clustered at the plant level. The full
results are reported in Appendix Table A2. Significance level: ∗∗∗ p< .01, ∗∗ p<.05, ∗ p<.1.

2018–2019; (ii) an unrelated incident occurred in the weeks preceding the furlough that

reduced coal–fired power plants’ emissions, violating the common trends assumption nec-

essary for identification.

To account for these possibilities, we include a post–furlough period to detect the case

(i) and artificially assign a placebo “EPA furlough” in 2018 before the true EPA furlough

to detect the case (ii).

Robustness check 1: ruling out incidents during the EPA’s furlough

Conditional on the results of our event study analysis, there still remain two plausible

scenarios that do not violate the common trend assumption, but through which an inci-

dent contemporaneous with the furlough may contribute to emissions: first, an unrelated

incident that extended from the EPA’s furlough to some point after the furlough; second,

an incident that was nested within the time frame of the EPA’s furlough. To test the first

possibility, we extend our sample to March 25, including an additional 57 days after the

furlough officially ended.23 We test for a difference between the treatment and control

group after the EPA returned to regular enforcement relative to the pre–furlough group

23The exception is 2016 which is a leap year: the data are extended to March 24 rather than March
25.
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difference. Failure to detect a difference (insignificant coefficient on the post-furlough

dummy) not only rules out any incident that extended from the furlough to some point

during the post-furlough period, it also rules out any lagged effects from the furlough.

Table 4 reports the results with a post-furlough dummy for both the full sample and

the subsample with the shorter pre–furlough time horizon. Regardless of the outcome

pollutant or analysis sample, we do not find any significant effect during the post fur-

lough period.24 Furthermore, the coefficients on the furlough period dummy are similar

in sign, significance and magnitude to those reported in our benchmark results in Table

2. Not only does this finding support our empirical conclusion that the increase in AOD

is driven by the EPA’s furlough, it is also consistent with our theory that plants restore

their compliance effort and emissions immediately after the regulation shock ends.

If our baseline results are driven by a contemporaneous incident without a lagged effect

and nested within the time frame of the EPA’s furlough, we are not able to disentangle

it from the furlough treatment, because there is no appropriate contemporaneous same

year counterfactual. However, the incident must have a nation–wide effect on all U.S.

coal–fired power plants. Since we do not find any reports of a national event or policy

change related to power plants during the EPA’s furlough period, we believe this case is

highly unlikely.

Table 4: Robustness check: including post EPA furlough period

Full Sample Short Sample

(1) (2) (3) (4) (5) (6)
SO2 (tons) NOX (tons) AOD (unitless) SO2 (tons) NOX (tons) AOD (unitless)

EPA Furlough 0.521 0.058 0.018∗∗ 0.819 0.123 0.021∗∗

(0.543) (0.201) (0.008) (0.547) (0.196) (0.009)
Post EPA Furlough −0.364 0.281 0.006 −0.572 0.221 0.013

(0.556) (0.259) (0.007) (0.531) (0.258) (0.008)
Adjusted R2 0.687 0.839 0.145 0.679 0.845 0.173
Sample Size 163,998 163,998 35,559 93,796 93,796 15,988

Note: The full sample consists of the pre-furlough period from October 22 to December 28; the furlough period
from December 29 to January 27; and the post-furlough period from January 28 to March 25, of the shutdown
year and the previous 5 years. The short sample consists of the shorter pre-fought period from December 1 to
December 28; the furlough period from December 29 to January 27; and the post-furlough period from January
28 to March 25, in the shutdown year and the previous 5 years. All the regressions include the following control
variables: weather, electricity and steam production; and fixed effects: year FE, date FE, weekdays, week × plant
FE. The standard errors are clustered at the plant level. The full results are reported in Appendix Table A4.
Significance level: ∗∗∗ p< .01, ∗∗ p<.05, ∗ p<.1.

24The magnitude of post furlough coefficients in Table 4 are also much smaller than the furlough
coefficients except NOX .
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Robustness check 2: ruling out an incident in 2018 prior to the EPA’s

furlough

The possibility that there is a confounding incident in 2018 prior to the EPA furlough

can be ruled out if the pre–shutdown period weekly trends in that year is statistically

similar to the weekly trend in the previous years. We report some evidence in favor of

this in Figures 3 and A1. Here, we report the results from an additional placebo test to

bolster the case that there is no incident during the pre–shutdown period that falsifies

our findings.

First, we take the subset of the full sample in the pre–shutdown period, from October

22 to December 28, and assign a pre–shutdown placebo treatment from December 1 to

December 28. The results of the placebo treatment are reported in Table 5, columns

(1) to (3). For all pollutants, the coefficient on the pre–shutdown placebo treatment are

generally insignificant; the only exception for the placebo treatment is the coefficient on

AOD which is negative and significant at 10%. In Appendix Table A5 column (3b), we

re–estimate the model for AOD after excluding observations from the two pre–treatment

weeks in November with significantly higher AOD (see Figure 3c) and we confirm that the

coefficient on the placebo treatment is driven by these anomalous observations. We also

test the same pre–shutdown placebo treatment in an extended model where we addition-

ally include both the true shutdown treatment and post–shutdown placebo treatment.

The results are reported in Table 5, columns (4) to (6). Again, none of the pre–shutdown

and post–shutdown placebo treatment coefficients are statistically significant.

Table 5: Placebo test: placebo EPA furlough from December 1 to December 28, 2018

Dependent Variable

(1) (2) (3) (4) (5) (6)
SO2 (tons) NOX (tons) AOD (unitless) SO2 (tons) NOX (tons) AOD (unitless)

Placebo EPA Furlough −0.726 −0.059 −0.011∗ −0.617 −0.125 −0.007
(0.785) (0.278) (0.006) (0.707) (0.266) (0.006)

EPA Furlough 0.869 0.128 0.022∗∗

(0.569) (0.201) (0.009)
Post EPA Furlough −0.013 0.352 0.010

(0.490) (0.265) (0.008)
Adjusted R2 0.687 0.839 0.145 0.679 0.845 0.173
Sample Size 71,011 71,011 18,659 163,998 163,998 35,559

Note: The sample for columns (1) – (3) consists of a pre-furlough period from October 22 to November 30 and a
placebo furlough period from December 1 to December 28, in each year from 2013 to 2018. The sample for columns
(4) – (6) consists of the pre–furlough period from October 22 to December 28; the furlough period from December 29
to January 27; and the post-furlough period from January 28 to March 25, each year of the shutdown year and the
previous 5 years. All the regressions include the following control variables: weather, electricity and steam produc-
tion; and fixed effects: year FE, date FE, weekdays, week × plant FE. The standard errors are clustered at the plant
level. The full results are reported in Appendix Table A5. Significance level: ∗∗∗ p< .01, ∗∗ p<.05, ∗ p<.1.

Second, we again use the pre–shutdown period data, from both the full sample and
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Table 6: Robustness check: placebo furlough in every week before the true EPA furlough

Full Sample Short Sample

(1) (2) (3) (4) (5) (6)
SO2 (tons) NOX (tons) AOD (unitless) SO2 (tons) NOX (tons) AOD (unitless)

Placebo EPA furlough: 0.485 −0.409 −0.015
Oct. 22nd - Oct. 28th (0.595) (0.327) (0.022)

Placebo EPA furlough: 0.319 −0.195 0.010
Oct. 29nd - Nov. 4th (0.361) (0.214) (0.023)

Placebo EPA furlough: 0.091 0.002 0.022
Nov. 5th - Nov. 11th (0.500) (0.303) (0.022)

Placebo EPA furlough: −1.171 −0.022 0.028
Nov. 12th - Nov. 18th (1.028) (0.349) (0.023)

Placebo EPA furlough: −1.661∗ −0.022 0.004
Nov. 19th - Nov. 25th (0.958) (0.339) (0.021)

Placebo EPA furlough: −1.044 0.304 0.004
Nov. 26th - Nov. 30th (0.917) (0.335) (0.022)

Placebo EPA furlough: −1.592 0.297 −0.039∗ −1.525∗ 0.291 −0.034
Dec. 1st - Dec. 7th (1.232) (0.365) (0.023) (0.822) (0.340) (0.021)

Placebo EPA furlough: −1.711 −0.406 0.019 −1.641∗ −0.408 0.013
Dec. 8th - Dec. 14th (1.335) (0.415) (0.021) (0.848) (0.369) (0.023)

Placebo EPA furlough: −1.279 −0.137 −0.012 −1.250∗ −0.078 −0.014
Dec. 15th - Dec. 21st (1.182) (0.479) (0.025) (0.690) (0.384) (0.024)

Placebo EPA furlough: −0.348 −0.243 0.007 −0.329 −0.247 −0.003
Dec. 22nd - Dec. 28th (1.102) (0.426) (0.022) (0.482) (0.305) (0.021)
Adjusted R2 0.709 0.842 0.137 0.681 0.844 0.150
Sample Size 71,011 71,011 18,659 30,257 30,257 5,623

Note: The sample for columns (1) – (3) consists of the pre-treatment period of the full sample from October 22 to
December 28, each year in the shutdown year and the previous 5 years. The sample for columns (4) – (6) consists of
the pre-treatment period of the short sample from December 1 to December 28, each year in the shutdown year and
the previous 5 years. The standard errors are clustered at the plant level. The full results are reported in Appendix
Table A6. Significance level: ∗∗∗ p< .01, ∗∗ p<.05, ∗ p<.1.

the short sample and assign multiple placebo treatments during the pre–shutdown pe-

riod, which are mostly defined on a weekly basis. Table 6 reports the results: none of

these placebo treatments has a statistically significant coefficient at the 5% or lower level

of significance, and only four coefficients in the SO2 models have negative coefficients

that are significant at the 10% level.25 On the whole, these results do not support a

confounding event in the pre–furlough period.

25This is another way to obtain suggestive evidence on the pre–treatment common trend assumption,
and it reaffirms our findings from the event study analysis.
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6 Explaining the Change in Emission During the Fur-

lough

Having established a causal link between the EPA furlough and the statistically signifi-

cant increase in aerosol concentration (AOD) around coal–fired power plants along with

negligible changes in SO2 and NOX emissions, we next examine the channels through

which coal–fired power plants were able to increase their unmonitored emissions during

the federal government shutdown. In practice, coal–fired power plants can adjust their

compliance efforts by modifying pollution control methods during the pre–combustion,

in–combustion, or/and post–combustion phases. During pre–combustion, power plants

may switch to cheaper but more polluting grades of coal in the absence of strict en-

forcement, because the unit price of coal varies across coal types and grades within type

(Taylor, 2012).26 Although it is implausible to assume power plants switch to different

coal providers from another coal mining region in such a short period, it is possible for

plants to acquire lower grade coal from the same coal providers, because coal grades are

not only different across coal mining regions in the U.S., they also vary within the same

region.27 In addition, according to the EIA (https://www.eia.gov/coal/data/browser/,

by mine/plant data), coal-fired power plants routinely acquire coal of different grades

from multiple providers at same time, which also makes it easy to temporally switch

the coal grade. During the in–combustion phase, power plants might operate units with

lower efficiency. The low efficiency units are typically less profitable to operate because

they are subject to higher emission cost and therefore higher production costs. However,

the lower risk of federal inspections and penalties during the shutdown reduced the ex-

pected emission cost. The third strategic action is to temporarily reduce post-combustion

end-of-pipe pollution control as a cost saving measure.28

26According to the EIA, the national average unit price per short ton is $59.43 for bituminous and
$13.64 for subbituminous (https://www.eia.gov/energyexplained/coal/prices-and-outlook.php) Within
coal types, the unit price varies with the heat and sulfur content of the coal.

27For example, in Western Montana low-sulfur subbituminous coal has 0.39 lbs/MBTU sulfur content
and 18.56 MBTU per short ton heat content whereas mid-sulfur subbituminous coal has 0.80 lbs/MBTU
sulfur content and 17.05 MBTU per short ton heat content. Switching to coal from a different region or
from bituminous to subbituminous coal can result in even greater changes in sulfur and heat contents
(EIA, 2018)

28According to EPA’s Clean Air Markets Division (EPA Clean Air Markets Division, 2013), there
are two post-combustion retrofit NOx control technologies for existing coal units: selective catalytic
reduction (SCR) and selective non-catalytic reduction. The Flue Gas Desulfurization post-combustion
control technology for SO2 includes wet and dry flue gas desulfurization. The control techonology for
PM includes pulse-jet fabric filter and electrostatic precipitator upgrade adjustment. EPA Clean Air
Markets Division (2013) also includes the captial, fixed and variable operational and maintenance costs
for each control technology. For instance, using a 275 MW unit as example, NOx’s SCR capital cost is
about 71.64 $/kW ; fixed operation and maintenance cost is approximately 1.04 $/kW per year; variable
operational and maintenance cost is approximately 0.13 $/MWh.
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Table 7: Potential mechanisms

Full Sample

(1) (2) (3)
CO2 (103 tons) Electricity Prod. (103 MWH) AOD (unitless)

EPA Furlough 0.025 −0.059 0.018∗∗

(0.017) (0.046) (0.008)
Adjusted R2 0.999 0.996 0.151
Sample Size 104,282 104,282 24,310

Short Sample

CO2 (103 tons) Electricity Prod. (103 MWH) AOD (unitless)

EPA Furlough 0.009 −0.029 0.022∗∗

(0.000) (0.045) (0.009)
Adjusted R2 0.999 0.996 0.189
Sample Size 63,528 63,528 11,274

Note: The full sample consists of the pre-furlough period from October 22 to Decem-
ber 28; the furlough period from December 29 to January 27; and the post-furlough
period from January 28 to March 25, each year in the shutdown year and the pre-
vious 5 years. The short sample consists of the pre-fought period from December
1 to December 28; the furlough period from December 29 to January 27; and the
post-furlough period from January 28 to March 25, each year in the shutdown year
and the previous 5 years. All the regressions include the following control variables:
weather, heat input; and fixed effects: year FE, date FE, weekdays, week × plant
FE. Additional control variables: column (2) includes steam production, column (3)
– (5) include CO2 emissions. The standard errors are clustered at the plant level.
The full results are reported in Appendix Tables A7 and A8. Significance level: ∗∗∗

p< .01, ∗∗ p<.05, ∗ p<.1.

In the following, we empirically disentangle these three strategic actions. We use

the same identification framework as in equation 3, with different model specifications

for each of the three strategic actions. The results are reported in Table 7, including the

results using the full sample and short pre-treatment time horizon, both with the standard

errors clustered at plant level. The results are insensitive to the choice of samples.

First, we test whether coal-fired power plants switched to lower grade coal using daily

CO2 emissions as the outcome variable. CO2 is neither regulated nor subject to any

end-of-pipe pollution control, thus, conditioning on weather and heat input ensures that

the variation in CO2 emission is solely driven by burning different grades of coal, not

production efficiency or pollution control.29 We do not find significant changes in daily

CO2 emissions during the furlough, as shown in column (2) in both panels of Tables

7. This suggests that the increase in particulate matter emissions reported in the main

analysis was not due to switching coal grades.

Then, to test whether coal-fired power plants temporarily operated their lower effi-

29A more direct test on fuel switching would require daily plant-level fuel data. However, these data
are not publicly available.
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ciency units, we use daily electricity production as the outcome variable. We include

weather, heat input, steam production, and CO2 emissions as controls. In keeping with

the first law of thermodynamics, heat input should equal the summation of electric en-

ergy produced, steam energy produced, and energy loss. So conditioning on heat input

and steam production, lower electricity production means higher heat loss, and therefore

lower efficiency. We include CO2 emissions as a control variable because the heat rate

of a power plant (heat input per net kWh electricity generated) is affected by the type

and grade of coal used (Walsh et al., 2015). Since for same heat content, different coal

types have different CO2 emissions, holding heat input and CO2 constant accounts for

coal type variation. As reported in column (2) of Table 7, conditioning on heat input and

CO2 emissions, there is no significant change in daily electricity production during the

furlough period. This implies that the increase in particulate matter emissions during

the EPA’s furlough was not due to the operation of lower efficiency units.

Finally, we test whether coal-fired power plants temporarily reduced end-of-pipe pol-

lution control. We use daily AOD as outcome variable.30 Our control variables include

the daily heat input and CO2 emissions, which allows us to simultaneously account for

the effects of changing production efficiency and coal type, thus identifying the changes

in end-of-pipe pollution control.

We find a significant increase in AOD during the furlough, similar in magnitude to the

baseline results. The comparable magnitude of the increase in AOD reported in Table

2 versus Table 7 suggests that the AOD changes are almost entirely explained via the

pollution control mechanism.

7 Discussion and Conclusion

Understanding firm behavior in response to changes in regulatory policy is essential for

designing public policies. A central focus of the literature is the long–run impact of

regulation on firm behavior. There is scant emphasis on firm responses in the event of

an unanticipated and temporary modification in regulation. Using a simple conceptual

framework, we demonstrate that firms react strategically even to a temporary, short–run

change in environmental regulatory stringency, by immediately reducing their pollution

abatement effort in order to minimize their total emission cost.

Following this conceptual framework, we exploit the 2018–19 federal government shut-

down as a natural experiment, and assess whether this temporary interruption in the

enforcement of environmental regulation caused increases in daily emissions of regu-

30We also analyze SO2 and NOX emissions and, as expected, we do not find any evidence of a change
in end-of-pipe pollution control. See Appendix Tables A7 and A8 for the full results.
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lated pollutants from coal-fired power plants. We focus on the universe of coal-fired

power plants that were operating during the shutdown, and use emissions from the same

plant on the same date from the previous 5 years to obtain the counterfactual. Using

a difference-in-differences model, we find that the aerosol concentration (measured by

satellite–retrieved AOD data) surrounding the coal-fired power plants increased signifi-

cantly during the EPA’s furlough. In contrast with the counterfactual (as if there was

no government shutdown), the aerosol concentration within a 3 km radium circular area

surrounding coal-fired power plants was higher by 0.018 – 0.022, on average. This is

a large increase compared to the average AOD for the U.S. of 0.1 to 0.15,31 and it is

almost five times higher than the increase in aerosol concentrations in the vicinity of

unconventional shale gas wells in Pennsylvania reported by Zhang et al. (2021b). We

confirm that the increase in aerosol concentration occurred because plants temporarily

reduced end-of-pipe pollution abatement. At the same time, there was no change in SO2

and NOX emissions both of which are continuously monitored under emissions trading

programs and did not experience any appreciable change in regulation stringency.

This paper fills a gap in the regulation literature by isolating the short–run effect

of a temporary interruption in regulation. We provide evidence that unexpectedly low-

ering the stringency of environmental regulation even temporarily elicits a strategic re-

sponse from polluting firms that immediately lower their environmental effort and in-

crease their daily emissions. Conversely, once regulation stringency is restored, firm

emissions are correspondingly lowered. Given the association between air pollution and

health outcomes (Dominici et al., 2006; Atkinson et al., 2014), our findings raise con-

cerns regarding the potential health implications from even a temporary and short–term

change in environmental regulation, not only due to a federal government shutdown,

but due to any unusual interruption that may weaken environmental enforcement. As a

unique example, during the COVID-19 pandemic, the EPA has relaxed its enforcement of

several CAA regulations (https://www.epa.gov/sites/production/files/2020-03/

documents/oecamemooncovid19implications.pdf), which may increase the emissions

of particulate matter. Using the coefficients reported in Zhang et al. (2021b), we estimate

that the 0.018–0.022 increase in AOD translates to an increase by PM2.5 concentrations

of about 0.118–0.144 µg/m3.32 Sadly, Wu et al. (2020) finds that an increase of only 1

µg/m3 in PM2.5 is associated with an 8% increase in the COVID-19 death rate, making

the health implications even more prominent and acute. Our results suggest that EPA in-

spections play an important role in regulating firm emissions, and that monitoring costs

31According to the Global Monitoring Laboratory within NOAA, a value of 0.01 corresponds to an
extremely clean atmosphere, and a value of 0.4 would correspond to a very hazy condition.

32This assumes that the relationship between the increase in AOD and PM2.5 identified by Zhang
et al. (2021b) for Pennsylvania can be generalized for the entire U.S.
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aside, a continuous emission monitoring system can be an effective tool for pollution

regulation.
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A Appendix: For online publication

A.1 Comparative Statistics

Taking the partial derivative of equation 2 with respect to mt yields

f
∂p(x∗)

∂x∗
+mf

∂2p(x∗)

∂x∗2
∂x∗

∂m
=
∂2g(x∗; θ)
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Because ∂2g(x∗;θ)
∂x∗2

> 0, ∂2p(x∗)
∂x∗2

< 0 and ∂p(x∗)
∂x∗

> 0; we have ∂x∗

∂m
> 0. Similarly, the partial

derivative of equation 2 with respect to f gives
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Because ∂2g(x∗;θ)
∂x∗2

> 0, ∂2p(x∗)
∂x∗2

< 0 and ∂p(x∗)
∂x∗

> 0; we have ∂x∗

∂f
> 0.
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A.2 Event Study using the Short Sample

Figure A1: Event Study, Short Sample

(a) SO2 Emissions

(b) NOX Emissions

(c) AOD Concentration
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A.3 Tables

Table A1: Main results

Dependent variable:

Full Sample Short Sample

SO2 (tons) NOX (tons) AOD SO2 (tons) NOX (tons) AOD

(1) (2) (3) (4) (5) (6)

EPA Furlough 0.445 0.094 0.018 0.774 0.156 0.022
(0.278) (0.104) (0.005)∗∗∗ (0.344)∗∗ (0.126) (0.006)∗∗∗

(0.550) (0.207) (0.008)∗∗ (0.533) (0.201) (0.009)∗∗

(0.521) (0.250) (0.008)∗∗ (0.479) (0.230) (0.010)∗∗

Precipitation −0.007 −0.005 −0.001 −0.001 −0.001 −0.000
(0.007) (0.003)∗ (0.000)∗∗∗ (0.010) (0.004) (0.000)
(0.005) (0.003) (0.000)∗∗∗ (0.008) (0.003) (0.000)
(0.005) (0.003) (0.000)∗∗∗ (0.008) (0.004) (0.000)

Temperature −0.035 −0.038 −0.004 −0.065 −0.023 −0.006
(0.020)∗ (0.007)∗∗∗ (0.000)∗∗∗ (0.027)∗∗ (0.010)∗∗ (0.000)∗∗∗

(0.046) (0.024) (0.000)∗∗∗ (0.040) (0.020) (0.001)∗∗∗

(0.042) (0.025) (0.001)∗∗∗ (0.043) (0.021) (0.001)∗∗∗

Dew Point 0.028 0.019 0.003 0.050 0.007 0.004
(0.018) (0.007)∗∗∗ (0.000)∗∗∗ (0.025)∗∗ (0.009) (0.000)∗∗∗

(0.025) (0.027) (0.000)∗∗∗ (0.027)∗ (0.020) (0.000)∗∗∗

(0.028) (0.027) (0.001)∗∗∗ (0.035) (0.020) (0.000)∗∗∗

Wind Speed −0.010 −0.003 −0.003 −0.030 −0.001 −0.004
(0.018) (0.007) (0.000)∗∗∗ (0.024) (0.009) (0.000)∗∗∗

(0.020) (0.008) (0.000)∗∗∗ (0.021) (0.010) (0.001)∗∗∗

(0.023) (0.010) (0.001)∗∗∗ (0.025) (0.012) (0.001)∗∗∗

Electricity Prod. (103 MWH) 1.149 0.754 0.000 1.118 0.759 0.000
(0.008)∗∗∗ (0.003)∗∗∗ (0.000)∗∗ (0.011)∗∗∗ (0.004)∗∗∗ (0.000)
(0.186)∗∗∗ (0.049)∗∗∗ (0.000)∗ (0.172)∗∗∗ (0.050)∗∗∗ (0.000)
(0.190)∗∗∗ (0.064)∗∗∗ (0.000)∗ (0.179)∗∗∗ (0.066)∗∗∗ (0.000)

Steam Prod. (103 lbs.) 0.000 0.000 0.000 0.000 0.000 −0.000
(0.000)∗∗∗ (0.000)∗∗∗ (0.000) (0.000)∗∗∗ (0.000)∗∗∗ (0.000)
(0.000)∗∗∗ (0.000)∗∗∗ (0.000) (0.000)∗∗ (0.000)∗∗∗ (0.000)
(0.000)∗∗∗ (0.000)∗∗∗ (0.000) (0.000)∗∗ (0.000)∗∗∗ (0.000)

Year 2014-15 −2.372 −0.766 −0.002 −2.927 −0.885 −0.008
(0.160)∗∗∗ (0.060)∗∗∗ (0.002) (0.215)∗∗∗ (0.079)∗∗∗ (0.003)∗∗

(0.764)∗∗∗ (0.301)∗∗ (0.003) (0.870)∗∗∗ (0.372)∗∗ (0.004)∗∗

(0.862)∗∗∗ (0.235)∗∗∗ (0.003) (0.984)∗∗∗ (0.305)∗∗∗ (0.004)∗

Year 2015-16 −5.051 −1.596 −0.016 −5.248 −1.545 −0.011
(0.166)∗∗∗ (0.062)∗∗∗ (0.003)∗∗∗ (0.222)∗∗∗ (0.081)∗∗∗ (0.004)∗∗∗

(0.895)∗∗∗ (0.364)∗∗∗ (0.003)∗∗∗ (0.985)∗∗∗ (0.379)∗∗∗ (0.004)∗∗

(0.741)∗∗∗ (0.392)∗∗∗ (0.005)∗∗∗ (0.785)∗∗∗ (0.423)∗∗∗ (0.004)∗∗

Year 2016-17 −7.031 −2.299 −0.004 −7.356 −2.238 −0.011
(0.166)∗∗∗ (0.062)∗∗∗ (0.002)∗ (0.218)∗∗∗ (0.080)∗∗∗ (0.004)∗∗∗

(1.792)∗∗∗ (0.430)∗∗∗ (0.003) (1.907)∗∗∗ (0.454)∗∗∗ (0.004)∗∗∗

(1.302)∗∗∗ (0.522)∗∗∗ (0.004) (1.399)∗∗∗ (0.599)∗∗∗ (0.003)∗∗∗

Year 2017-18 −7.144∗∗∗ −2.957∗∗∗ −0.011∗∗∗ −7.291∗∗∗ −3.009∗∗∗ −0.002
(0.164)∗∗∗ (0.061)∗∗∗ (0.002)∗∗∗ (0.217)∗∗∗ (0.079)∗∗∗ (0.003)
(1.720)∗∗∗ (0.507)∗∗∗ (0.003)∗∗∗ (1.867)∗∗∗ (0.539)∗∗∗ (0.005)
(1.268)∗∗∗ (0.631)∗∗∗ (0.005)∗∗ (1.369)∗∗∗ (0.706)∗∗∗ (0.006)

Year 2018-19 −7.133∗∗∗ −3.279∗∗∗ −0.013∗∗∗ −7.796∗∗∗ −3.334∗∗∗ −0.016∗∗∗

(0.188)∗∗∗ (0.070)∗∗∗ (0.003)∗∗∗ (0.283)∗∗∗ (0.104)∗∗∗ (0.004)∗∗∗

(1.610)∗∗∗ (0.689)∗∗∗ (0.004)∗∗∗ (2.004)∗∗∗ (0.643)∗∗∗ (0.005)∗∗∗

(1.257)∗∗∗ (0.850)∗∗∗ (0.005)∗∗ (1.587)∗∗∗ (0.838)∗∗∗ (0.006)∗∗

Monday −0.046 0.052 0.002 −0.036 0.064 0.009
(0.177) (0.066) (0.003) (0.236) (0.086) (0.004)∗∗

(0.084) (0.039) (0.003) (0.107) (0.049) (0.005)∗

(0.073) (0.042) (0.004) (0.101) (0.052) (0.006)

Saturday −0.054 −0.073 0.002 −0.101 −0.074 0.003
(0.177) (0.066) (0.003) (0.236) (0.086) (0.004)
(0.094) (0.030) (0.003) (0.096) (0.035)∗∗ (0.005)
(0.098) (0.035)∗∗ (0.003) (0.113) (0.039)∗ (0.004)

Sunday −0.125 −0.041 0.002 −0.232 −0.031 0.010
(0.177) (0.066) (0.003) (0.237) (0.087) (0.004)∗∗

(0.104) (0.046) (0.003) (0.113)∗∗ (0.049) (0.004)∗∗∗

(0.116) (0.039) (0.004) (0.151) (0.044) (0.006)∗

Thursday 0.044 0.048 0.004 0.137 0.081 0.003
(0.177) (0.066) (0.003) (0.237) (0.087) (0.004)
(0.050) (0.027)∗ (0.003) (0.071)∗ (0.032)∗∗ (0.004)
(0.049) (0.022)∗∗ (0.005) (0.064)∗∗ (0.026)∗∗∗ (0.006)

Tuesday 0.024 0.022 0.008 0.104 0.043 0.003
(0.177) (0.066) (0.003)∗∗∗ (0.235) (0.086) (0.004)
(0.076) (0.038) (0.003)∗∗∗ (0.097) (0.046) (0.004)
(0.082) (0.037) (0.004)∗∗ (0.097) (0.041) (0.004)

Wednesday 0.033 0.033 0.004 0.101 0.038 0.006
(0.177) (0.066) (0.003) (0.237) (0.087) (0.004)
(0.064) (0.027) (0.003) (0.082) (0.038) (0.005)
(0.064) (0.028) (0.003) (0.074) (0.033) (0.006)

Date FE Y Y Y Y Y Y

Week FE×Plant FE Y Y Y Y Y Y

Observations 104,282 104,282 24,310 63,528 63,528 11,274
R2 0.716 0.848 0.245 0.702 0.850 0.308
Adjusted R2 0.707 0.843 0.151 0.693 0.845 0.189
Residual Std. Error 15.048 (df = 101322) 5.633 (df = 101322) 0.102 (df = 21621) 15.656 (df = 61623) 5.732 (df = 61623) 0.095 (df = 9620)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Each coefficient has three standard errors: without clustering, clustering at plant level, clustering at state level.
For the first three columns, the sample is from Oct. 22nd to Mar. 25th for 2013-14, 2014-15, 2016-17, 2017-18 and 2018-19;

and from Oct. 22nd to Mar. 24th, 2015-16 (because of the leap year).
In the last three columns, the sample is from Dec. 1st to Feb. 24th of each year 2013-14, 2014-15, 2015-16, 2016-17, 2017-18 and 2018-19.
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Table A2: Additional results: comparison between coal fired power plants in Clean Air
Act attainment counties (152 plants) and non-attainment counties (26 plants)

Dependent variable:

Full Sample Short Sample

SO2(tons) NOX(tons) AOD SO2(tons) NOX(tons) AOD

(1) (2) (3) (4) (5) (6)

EPA Furlough × Attainment 1.255 0.188 0.010 1.758 0.268 0.015∗∗

(1.049) (0.239) (0.007) (1.393) (0.271) (0.007)

EPA Furlough × Non-attainment −7.066 0.422 0.078 −6.618 0.501 0.087
(6.783) (1.323) (0.054) (6.435) (1.276) (0.055)

Precipitation −0.002 −0.005 −0.000∗∗∗ 0.002 −0.001 −0.000
(0.005) (0.004) (0.000) (0.009) (0.004) (0.000)

Temperature −0.020 −0.035 −0.004∗∗∗ −0.046 −0.019 −0.006∗∗∗

(0.056) (0.026) (0.000) (0.050) (0.022) (0.001)

Dew Point 0.010 0.021 0.003∗∗∗ 0.024 0.009 0.004∗∗∗

(0.030) (0.029) (0.000) (0.031) (0.022) (0.000)

Wind Speed −0.015 −0.003 −0.003∗∗∗ −0.039∗∗ −0.006 −0.004∗∗∗

(0.018) (0.008) (0.000) (0.018) (0.010) (0.001)

Electricity Prod. (103 MWH) 1.207∗∗∗ 0.788∗∗∗ 0.000∗∗ 1.159∗∗∗ 0.796∗∗∗ 0.000∗

(0.218) (0.057) (0.000) (0.198) (0.060) (0.000)

Steam Prod. (103 lbs.) 0.000∗∗∗ 0.000∗∗∗ 0.000 0.000∗∗ 0.000∗∗∗ −0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Year 2014-15 −2.132∗∗∗ −0.896∗∗∗ −0.004 −2.621∗∗∗ −1.011∗∗∗ −0.010∗∗∗

(0.782) (0.312) (0.003) (0.788) (0.391) (0.004)

Year 2015-16 −5.148∗∗∗ −1.802∗∗∗ −0.017∗∗∗ −5.419∗∗∗ −1.778∗∗∗ −0.011∗∗∗

(0.977) (0.399) (0.004) (1.074) (0.412) (0.004)

Year 2016-17 −7.310∗∗∗ −2.491∗∗∗ −0.007∗ −7.741∗∗∗ −2.433∗∗∗ −0.012∗∗∗

(1.988) (0.475) (0.004) (2.132) (0.497) (0.004)

Year 2017-18 −7.910∗∗∗ −3.289∗∗∗ −0.012∗∗∗ −8.103∗∗∗ −3.324∗∗∗ −0.005
(1.947) (0.567) (0.003) (2.115) (0.600) (0.005)

Year 2018-19 −7.721∗∗∗ −3.754∗∗∗ −0.014∗∗∗ −8.592∗∗∗ −3.828∗∗∗ −0.019∗∗∗

(1.758) (0.759) (0.004) (2.215) (0.693) (0.004)

Monday −0.039 0.055 0.0004 0.011 0.083∗ 0.006
(0.087) (0.035) (0.003) (0.105) (0.047) (0.005)

Saturday −0.048 −0.072∗∗ 0.003 −0.100 −0.066∗ 0.003
(0.102) (0.032) (0.003) (0.098) (0.039) (0.005)

Sunday −0.137 −0.038 0.001 −0.251∗∗ −0.023 0.009∗∗

(0.104) (0.048) (0.003) (0.102) (0.052) (0.004)

Thursday 0.002 0.054∗ 0.004 0.086 0.090∗∗ −0.002
(0.051) (0.028) (0.003) (0.069) (0.035) (0.004)

Tuesday 0.027 0.012 0.008∗∗∗ 0.108 0.036 0.0003
(0.085) (0.035) (0.003) (0.106) (0.041) (0.004)

Wednesday 0.007 0.028 0.003 0.057 0.038 0.002
(0.070) (0.028) (0.003) (0.084) (0.037) (0.004)

Date FE Y Y Y Y Y Y

Week FE × Plant FE Y Y Y Y Y Y

Observations 91,508 91,508 21,245 55,738 55,738 9,785
R2 0.693 0.845 0.254 0.687 0.847 0.329
Adjusted R2 0.684 0.840 0.161 0.677 0.842 0.213
Residual Std. Error 15.239 (df = 88911) 5.728 (df = 88911) 0.099 (df = 18894) 15.724 (df = 54066) 5.814 (df = 54066) 0.091 (df = 8344)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Sample is from Oct. 22nd to Mar. 25th, each year of 2013-14, 2014-15, 2016-17, 2017-18 and 2018-19;

and from Oct. 22nd to Mar. 24th, 2015-16 (because of the leap year).
Standard error is clustered at plant level.
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Table A3: Additional results: comparison between coal fired power plants in Clean Air
Act attainment counties (152 plants) and non-attainment counties (26 plants), alternative
model with interactions

Dependent variable:

Full Sample Short Sample

SO2(tons) NOX(tons) AOD SO2(tons) NOX(tons) AOD

(1) (2) (3) (4) (5) (6)

EPA Furlough 1.255 0.188 0.010 1.758 0.268 0.015∗∗

(1.049) (0.239) (0.007) (1.393) (0.271) (0.007)

EPA Furlough × Non-attainment −8.321 0.234 0.068 −8.376 0.233 0.072
(7.677) (1.432) (0.053) (7.699) (1.431) (0.054)

Precipitation −0.002 −0.005 −0.000∗∗∗ 0.002 −0.001 −0.0001
(0.005) (0.004) (0.000) (0.009) (0.004) (0.000)

Temperature −0.020 −0.035 −0.004∗∗∗ −0.046 −0.019 −0.006∗∗∗

(0.056) (0.026) (0.000) (0.050) (0.022) (0.001)

Dew Point 0.010 0.021 0.003∗∗∗ 0.024 0.009 0.004∗∗∗

(0.030) (0.029) (0.000) (0.031) (0.022) (0.000)

Wind Speed −0.015 −0.003 −0.003∗∗∗ −0.039∗∗ −0.006 −0.004∗∗∗

(0.018) (0.008) (0.000) (0.018) (0.010) (0.001)

Electricity Prod. (103 MWH) 1.207∗∗∗ 0.788∗∗∗ 0.000∗∗ 1.159∗∗∗ 0.796∗∗∗ 0.000∗

(0.218) (0.057) (0.000) (0.198) (0.060) (0.000)

Steam Prod. (103 lbs.) 0.000∗∗∗ 0.000∗∗∗ 0.000 0.000∗∗ 0.000∗∗∗ −0.000
(0.000) (0.000) (0.000) (0.000) (0.0000) (0.000)

Year 2014-15 −2.132∗∗∗ −0.896∗∗∗ −0.004 −2.621∗∗∗ −1.011∗∗∗ −0.010∗∗∗

(0.782) (0.312) (0.003) (0.788) (0.391) (0.004)

Year 2015-16 −5.148∗∗∗ −1.802∗∗∗ −0.017∗∗∗ −5.419∗∗∗ −1.778∗∗∗ −0.011∗∗∗

(0.977) (0.399) (0.004) (1.074) (0.412) (0.004)

Year 2016-17 −7.310∗∗∗ −2.491∗∗∗ −0.007∗ −7.741∗∗∗ −2.433∗∗∗ −0.012∗∗∗

(1.988) (0.475) (0.004) (2.132) (0.497) (0.004)

Year 2017-18 −7.910∗∗∗ −3.289∗∗∗ −0.012∗∗∗ −8.103∗∗∗ −3.324∗∗∗ −0.005
(1.947) (0.567) (0.003) (2.115) (0.600) (0.005)

Year 2018-19 −7.721∗∗∗ −3.754∗∗∗ −0.014∗∗∗ −8.592∗∗∗ −3.828∗∗∗ −0.019∗∗∗

(1.758) (0.759) (0.004) (2.215) (0.693) (0.004)

Monday −0.039 0.055 0.0004 0.011 0.083∗ 0.006
(0.087) (0.035) (0.003) (0.105) (0.047) (0.005)

Saturday −0.048 −0.072∗∗ 0.003 −0.100 −0.066∗ 0.003
(0.102) (0.032) (0.003) (0.098) (0.039) (0.005)

Sunday −0.137 −0.038 0.001 −0.251∗∗ −0.023 0.009∗∗

(0.104) (0.048) (0.003) (0.102) (0.052) (0.004)

Thursday 0.002 0.054∗ 0.004 0.086 0.090∗∗ −0.002
(0.051) (0.028) (0.003) (0.069) (0.035) (0.004)

Tuesday 0.027 0.012 0.008∗∗∗ 0.108 0.036 0.0003
(0.085) (0.035) (0.003) (0.106) (0.041) (0.004)

Wednesday 0.007 0.028 0.003 0.057 0.038 0.002
(0.070) (0.028) (0.003) (0.084) (0.037) (0.004)

Date FE Y Y Y Y Y Y

Week FE × Plant FE Y Y Y Y Y Y

Observations 91,508 91,508 21,245 55,738 55,738 9,785
R2 0.693 0.845 0.254 0.687 0.847 0.329
Adjusted R2 0.684 0.840 0.161 0.677 0.842 0.213
Residual Std. Error 15.239 (df = 88911) 5.728 (df = 88911) 0.099 (df = 18894) 15.724 (df = 54066) 5.814 (df = 54066) 0.091 (df = 8344)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Sample is from Oct. 22nd to Mar. 25th, each year of 2013-14, 2014-15, 2016-17, 2017-18 and 2018-19;

and from Oct. 22nd to Mar. 24th, 2015-16 (because of the leap year).
Standard error is clustered at plant level.
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Table A4: Robustness check, including post EPA furlough period

Dependent variable:

Full Sample Short Sample

SO2 (tons) NOX (tons) AOD SO2 (tons) NOX (tons) AOD

(1) (2) (3) (4) (5) (6)

EPA Furlough 0.521 0.058 0.018∗∗ 0.819 0.123 0.021∗∗

(0.543) (0.201) (0.008) (0.547) (0.196) (0.009)

Post EPA Furlough −0.364 0.281 0.006 −0.572 0.221 0.013
(0.556) (0.259) (0.007) (0.531) (0.258) (0.008)

Precipitation −0.008 −0.003 −0.000∗∗∗ −0.005 −0.001 −0.001∗∗∗

(0.006) (0.003) (0.000) (0.008) (0.003) (0.000)

Temperature −0.054∗∗ −0.019 −0.003∗∗∗ −0.088∗∗∗ −0.020 −0.006∗∗∗

(0.026) (0.014) (0.000) (0.028) (0.015) (0.001)

Dew Point 0.035∗∗ 0.011 0.003∗∗∗ 0.058∗∗ 0.011 0.004∗∗∗

(0.017) (0.016) (0.0003) (0.027) (0.013) (0.0004)

Wind Speed −0.013 −0.008 −0.004∗∗∗ −0.019 −0.017∗∗ −0.004∗∗∗

(0.019) (0.007) (0.000) (0.022) (0.008) (0.001)

Electricity Prod. (103 MWH) 1.172∗∗∗ 0.751∗∗∗ 0.000∗∗ 1.136∗∗∗ 0.747∗∗∗ 0.0002
(0.205) (0.050) (0.000) (0.189) (0.050) (0.0002)

Steam Prod. (103 lbs.) 0.000∗∗∗ 0.000∗∗∗ −0.000 0.000∗∗ 0.000∗∗∗ −0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Year 2014-15 −2.757∗∗∗ −0.934∗∗∗ −0.006∗ −3.088∗∗∗ −1.154∗∗∗ −0.017∗∗∗

(0.761) (0.296) (0.003) (0.883) (0.363) (0.005)

Year 2015-16 −5.066∗∗∗ −1.655∗∗∗ −0.017∗∗∗ −5.152∗∗∗ −1.636∗∗∗ −0.015∗∗∗

(0.868) (0.331) (0.004) (0.935) (0.347) (0.005)

Year 2016-17 −7.286∗∗∗ −2.363∗∗∗ −0.014∗∗∗ −7.423∗∗∗ −2.450∗∗∗ −0.018∗∗∗

(1.751) (0.413) (0.004) (1.828) (0.426) (0.005)

Year 2017-18 −7.111∗∗∗ −2.829∗∗∗ −0.017∗∗∗ −7.358∗∗∗ −3.048∗∗∗ −0.006
(1.702) (0.489) (0.003) (1.815) (0.507) (0.005)

Year 2018-19 −7.286∗∗∗ −3.293∗∗∗ −0.017∗∗∗ −7.830∗∗∗ −3.469∗∗∗ −0.020∗∗∗

(1.616) (0.682) (0.004) (1.944) (0.647) (0.006)

Monday −0.040 0.053∗ 0.001 0.034 0.066 0.006
(0.065) (0.030) (0.003) (0.077) (0.041) (0.004)

Saturday −0.054 −0.079∗∗∗ −0.002 −0.098 −0.091∗∗∗ −0.005
(0.104) (0.027) (0.003) (0.104) (0.032) (0.004)

Sunday −0.115 −0.034 −0.002 −0.177 −0.043 0.010∗∗∗

(0.136) (0.044) (0.003) (0.140) (0.052) (0.003)

Thursday 0.080 0.052∗∗ −0.0001 0.153∗ 0.075∗∗ −0.0004
(0.061) (0.024) (0.003) (0.080) (0.031) (0.004)

Tuesday −0.003 0.021 0.005∗∗ 0.120 0.026 0.004
(0.063) (0.028) (0.003) (0.087) (0.037) (0.004)

Wednesday 0.018 0.025 0.001 0.100 −0.004 0.003
(0.064) (0.025) (0.003) (0.083) (0.035) (0.004)

Date FE Y Y Y Y Y Y

Week FE×Plant FE Y Y Y Y Y Y

Observations 163,998 163,998 35,559 93,796 93,796 15,988
R2 0.696 0.843 0.245 0.689 0.849 0.295
Adjusted R2 0.687 0.839 0.145 0.679 0.845 0.173
Residual Std. Error 15.780 (df = 159355) 5.627 (df = 159355) 0.123 (df = 31392) 16.211 (df = 91049) 5.668 (df = 91049) 0.111 (df = 13627)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
For the first three columns, the sample is from Oct. 22nd to Mar. 25th for 2013-14, 2014-15, 2016-17, 2017-18 and 2018-19;

and from Oct. 22nd to Mar. 24th, 2015-16 (because of the leap year).
For the last three columns, the sample is from Dec. 1st to Feb. 24th of each year 2013-14, 2014-15, 2015-16, 2016-17 2017-18 and 2018-19.
Standard error is clustered at plant level.
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Table A5: Placebo test, placebo EPA furlough is from December 1 to 28, 2018

Dependent variable:

Pre-Furlough Placebo Only Full Sample

SO2 (tons) NOX (tons) AOD AOD SO2 (tons) NOX (tons) AOD

(1) (2) (3a) (3b) (4) (5) (6)

Placebo EPA Furlough −0.726 −0.059 −0.011∗ −0.003 −0.617 −0.125 −0.007
(0.785) (0.278) (0.006) (0.006) (0.707) (0.266) (0.006)

EPA Furlough 0.869 0.128 0.022∗∗

(0.569) (0.201) (0.009)

Post EPA Furlough −0.013 0.352 0.010
(0.490) (0.265) (0.008)

Precipitation −0.007 −0.003 −0.001∗∗∗ −0.001∗∗∗ −0.008 −0.003 −0.000∗∗∗

(0.005) (0.004) (0.000) (0.000) (0.006) (0.003) (0.000)

Temperature 0.005 −0.054∗ −0.003∗∗∗ −0.002∗∗∗ −0.052∗ −0.019 −0.003∗∗∗

(0.063) (0.030) (0.000) (0.001) (0.027) (0.014) (0.000)

Dew Point 0.007 0.023 0.003∗∗∗ 0.003∗∗∗ 0.034∗∗ 0.010 0.003∗∗∗

(0.035) (0.032) (0.000) (0.000) (0.017) (0.016) (0.000)

Wind Speed −0.011 −0.004 −0.003∗∗∗ −0.004∗∗∗ −0.013 −0.008 −0.004∗∗∗

(0.024) (0.009) (0.000) (0.000) (0.019) (0.007) (0.000)

Electricity Prod. (103 MWH) 1.168∗∗∗ 0.753∗∗∗ 0.000 0.000 1.172∗∗∗ 0.751∗∗∗ 0.0004∗∗

(0.183) (0.049) (0.000) (0.000) (0.205) (0.050) (0.000)

Steam Prod. (103 lbs.) 0.000∗∗∗ 0.000∗∗∗ −0.000 −0.000∗∗ 0.000∗∗∗ 0.000∗∗∗ −0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Year 2014-15 −2.212∗∗∗ −0.496 −0.003 −0.016∗∗∗ −2.757∗∗∗ −0.934∗∗∗ −0.006∗

(0.822) (0.325) (0.003) (0.004) (0.761) (0.296) (0.003)

Year 2015-16 −5.160∗∗∗ −1.677∗∗∗ −0.026∗∗∗ −0.039∗∗∗ −5.069∗∗∗ −1.656∗∗∗ −0.017∗∗∗

(0.901) (0.384) (0.004) (0.005) (0.870) (0.331) (0.004)

Year 2016-17 −7.202∗∗∗ −2.307∗∗∗ −0.007∗ −0.011∗∗ −7.290∗∗∗ −2.363∗∗∗ −0.014∗∗∗

(1.768) (0.436) (0.004) (0.004) (1.754) (0.412) (0.004)

Year 2017-18 −7.327∗∗∗ −2.908∗∗∗ −0.020∗∗∗ −0.032∗∗∗ −7.113∗∗∗ −2.829∗∗∗ −0.017∗∗∗

(1.690) (0.528) (0.004) (0.005) (1.703) (0.489) (0.003)

Year 2018-19 −6.834∗∗∗ −3.226∗∗∗ −0.012∗∗∗ −0.027∗∗∗ −7.020∗∗∗ −3.239∗∗∗ −0.014∗∗∗

(1.384) (0.750) (0.004) (0.005) (1.446) (0.714) (0.004)

Monday 0.041 0.082∗ 0.004 0.004 −0.040 0.053∗ 0.001
(0.090) (0.050) (0.003) (0.004) (0.065) (0.030) (0.003)

Saturday −0.031 −0.064∗ 0.003 0.006∗ −0.051 −0.079∗∗∗ −0.002
(0.121) (0.037) (0.003) (0.004) (0.105) (0.027) (0.003)

Sunday 0.014 −0.032 0.003 0.004 −0.114 −0.034 −0.002
(0.117) (0.057) (0.003) (0.004) (0.137) (0.044) (0.003)

Thursday 0.077 0.027 0.007∗ 0.016∗∗∗ 0.081 0.052∗∗ −0.0002
(0.061) (0.035) (0.004) (0.005) (0.061) (0.024) (0.003)

Tuesday 0.050 0.011 0.011∗∗∗ 0.009∗∗ −0.003 0.021 0.005∗∗

(0.090) (0.046) (0.003) (0.004) (0.063) (0.028) (0.003)

Wednesday 0.031 0.006 0.005 0.011∗∗ 0.018 0.025 0.001
(0.068) (0.035) (0.004) (0.005) (0.063) (0.025) (0.003)

Date FE Y Y Y Y Y Y Y

Week FE×Plant FE Y Y Y Y Y Y Y

Observations 71,011 71,011 18,659 13,990 163,998 163,998 35,559
R2 0.718 0.847 0.228 0.227 0.696 0.843 0.245
Adjusted R2 0.709 0.842 0.135 0.128 0.687 0.839 0.145
Residual Std. Error 14.848 (df = 68893) 5.600 (df = 68893) 0.104 (df = 16661) 0.105 (df = 12406) 15.780 (df = 159354) 5.627 (df = 159354) 0.123 (df = 31391)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
For the first three columns, the sample is from Oct. 22nd to Dec. 28th for 2013-14, 2014-15, 2015-16, 2016-17, 2017-18 and 2018-19.
For the fourth column, the sample is from Oct. 22nd to Dec. 28th but exclude two anomalous weeks in November (see Figure 3c) for 2013-14, 2014-15, 2015-16, 2016-17, 2017-18 and 2018-19.
For the last three columns, the sample is from Oct. 22nd to Mar. 25th of each year 2013-14, 2014-15, 2016-17, 2017-18 and 2018-19;

and from Oct. 22nd to Mar. 24th, 2015-16 (because of the leap year).
Standard error is clustered at plant level.
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Table A6: Placebo test, placebo EPA furlough is set for every week before the EPA
furlough

Dependent variable:

Short Sample Full Sample

SO2 (tons) NOX (tons) AOD SO2 (tons) NOX (tons) AOD

(1) (2) (3) (4) (5) (6)

Placebo EPA Furlough: 0.485 −0.409 −0.015
Oct. 22nd - Oct. 28th (0.595) (0.327) (0.022)

Placebo EPA Furlough: 0.319 −0.195 0.010
Oct. 29nd - Nov. 4th (0.361) (0.214) (0.023)

Placebo EPA Furlough: 0.091 0.002 0.022
Nov. 5th - Nov. 11th (0.500) (0.303) (0.022)

Placebo EPA Furlough: −1.171 −0.022 0.028
Nov. 12th - Nov. 18th (1.028) (0.349) (0.023)

Placebo EPA Furlough: −1.661∗ −0.022 0.004
Nov. 19th - Nov. 25th (0.958) (0.339) (0.021)

Placebo EPA Furlough: −1.044 0.304 0.004
Nov. 26th - Nov. 30th (0.917) (0.335) (0.022)

Placebo EPA Furlough: −1.525∗ 0.291 −0.034 −1.592 0.297 −0.039∗

Dec. 1st - Dec. 7th (0.822) (0.340) (0.021) (1.232) (0.365) (0.023)

Placebo EPA Furlough: −1.641∗ −0.408 0.013 −1.711 −0.406 0.019
Dec. 8th - Dec. 14th (0.848) (0.369) (0.023) (1.335) (0.415) (0.021)

Placebo EPA Furlough: −1.250∗ −0.078 −0.014 −1.279 −0.137 −0.012
Dec. 15th - Dec. 21st (0.690) (0.384) (0.024) (1.182) (0.479) (0.025)

Placebo EPA Furlough: −0.329 −0.247 −0.003 −0.348 −0.243 0.007
Dec. 22nd - Dec. 28th (0.482) (0.305) (0.021) (1.102) (0.426) (0.022)

Precipitation 0.004 0.005 −0.0005∗ −0.007 −0.003 −0.001∗∗∗

(0.010) (0.004) (0.0003) (0.005) (0.004) (0.0002)

Temperature −0.012 −0.044 −0.005∗∗∗ 0.001 −0.053∗ −0.002∗∗∗

(0.062) (0.029) (0.001) (0.061) (0.030) (0.0004)

Dew Point 0.014 0.0003 0.004∗∗∗ 0.011 0.023 0.003∗∗∗

(0.045) (0.028) (0.001) (0.033) (0.032) (0.0004)

Wind Speed −0.046 0.007 −0.005∗∗∗ −0.014 −0.005 −0.003∗∗∗

(0.032) (0.017) (0.001) (0.024) (0.009) (0.0004)

Electricity Prod. (103 MWH) 1.130∗∗∗ 0.763∗∗∗ 0.0001 1.170∗∗∗ 0.752∗∗∗ 0.0002
(0.154) (0.050) (0.0003) (0.184) (0.049) (0.0002)

Steam Prod. (103 lbs.) 0.0002∗∗∗ 0.0001∗∗∗ −0.00000∗ 0.0002∗∗∗ 0.0001∗∗∗ −0.00000
(0.0001) (0.00001) (0.00000) (0.0001) (0.00001) (0.00000)

Year 2014-15 −3.079∗∗∗ −0.314 −0.026∗∗∗ −2.210∗∗∗ −0.497 −0.004
(1.058) (0.450) (0.007) (0.823) (0.325) (0.003)

Year 2015-16 −5.647∗∗∗ −1.624∗∗∗ −0.035∗∗∗ −5.155∗∗∗ −1.679∗∗∗ −0.027∗∗∗

(1.085) (0.432) (0.007) (0.899) (0.385) (0.004)

Year 2016-17 −7.977∗∗∗ −2.253∗∗∗ −0.013∗∗ −7.195∗∗∗ −2.310∗∗∗ −0.008∗∗

(1.911) (0.499) (0.006) (1.765) (0.436) (0.004)

Year 2017-18 −7.850∗∗∗ −2.967∗∗∗ −0.017∗∗∗ −7.319∗∗∗ −2.911∗∗∗ −0.021∗∗∗

(1.930) (0.613) (0.007) (1.687) (0.528) (0.004)

Year 2018-19 −6.939∗∗∗ −3.116∗∗∗ −0.022 −6.316∗∗∗ −3.167∗∗∗ −0.019
(1.641) (0.731) (0.021) (1.287) (0.802) (0.021)

Monday 0.201 0.149∗ 0.018∗∗ 0.044 0.082 0.004
(0.149) (0.082) (0.007) (0.090) (0.050) (0.003)

Saturday −0.095 −0.038 0.007 −0.039 −0.057 0.003
(0.156) (0.058) (0.006) (0.118) (0.038) (0.003)

Sunday −0.008 0.019 0.020∗∗∗ 0.006 −0.026 0.003
(0.165) (0.077) (0.006) (0.115) (0.058) (0.003)

Thursday 0.332∗∗∗ 0.071 0.010 0.081 0.026 0.007∗∗

(0.117) (0.054) (0.006) (0.062) (0.035) (0.004)

Tuesday 0.282∗ 0.044 0.006 0.052 0.011 0.011∗∗∗

(0.144) (0.074) (0.005) (0.090) (0.046) (0.003)

Wednesday 0.209∗ −0.009 0.012 0.031 0.008 0.005
(0.108) (0.067) (0.009) (0.068) (0.035) (0.004)

Date FE Y Y Y Y Y Y

Week FE×Plant FE Y Y Y Y Y Y

Observations 30,257 30,257 5,623 71,011 71,011 18,659
R2 0.692 0.849 0.296 0.718 0.847 0.230
Adjusted R2 0.681 0.844 0.150 0.709 0.842 0.137
Residual Std. Error 15.872 (df = 29191) 5.764 (df = 29191) 0.097 (df = 4658) 14.847 (df = 68884) 5.599 (df = 68884) 0.104 (df = 16652)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
For the first three columns, the sample is from Dec. 1st to Dec. 28th for 2013-14, 2014-15, 2015-16, 2016-17, 2017-18 and 2018-19. The reference date is Dec. 28th.
For the last three columns, the sample is from Oct. 22nd to Mar. 25th of each year 2013-14, 2014-15, 2016-17, 2017-18 and 2018-19;

and from Oct. 22nd to Mar. 24th, 2015-16 (because of the leap year). The reference date is Nov. 1st.
Standard error is clustered at plant level.
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Table A7: Potential mechanisms, full sample.

Dependent variable:

Electricity Prod. (103 MWH) CO2 (103 tons) SO2 (tons) NOX (tons) AOD

(1) (2) (3) (4) (5)

EPA Furlough −0.059 0.025 0.321 0.087 0.018∗∗

(0.046) (0.017) (0.517) (0.201) (0.008)

Precipitation 0.000 −0.000 −0.006 −0.005 −0.001∗∗∗

(0.001) (0.000) (0.005) (0.003) (0.000)

Temperature 0.003 0.000 −0.032 −0.035 −0.004∗∗∗

(0.003) (0.001) (0.046) (0.023) (0.000)

Dew Point −0.006∗∗ 0.002∗∗ 0.017 0.017 0.003∗∗∗

(0.003) (0.001) (0.023) (0.026) (0.000)

Wind Speed −0.001 −0.002∗∗ −0.009 −0.004 −0.003∗∗∗

(0.002) (0.001) (0.020) (0.008) (0.000)

Steam Prod. (103 lbs.) −0.000∗∗∗

(0.000)

Heat Input (103 mmBtu) 0.089∗∗∗ 0.104∗∗∗ −0.087 0.091∗∗∗ −0.000
(0.008) (0.002) (0.145) (0.035) (0.000)

CO2 (103 tons) 0.152∗ 2.000 −0.097 0.001
(0.081) (1.329) (0.319) (0.004)

Year 2014-15 −0.008 −0.007 −2.380∗∗∗ −0.748∗∗ −0.002
(0.070) (0.016) (0.779) (0.304) (0.003)

Year 2015-16 −0.171∗∗ −0.004 −5.258∗∗∗ −1.670∗∗∗ −0.016∗∗∗

(0.073) (0.016) (0.921) (0.369) (0.003)

Year 2016-17 −0.132∗ 0.017 −7.231∗∗∗ −2.357∗∗∗ −0.004
(0.080) (0.024) (1.790) (0.432) (0.003)

Year 2017-18 −0.110 0.010 −7.305∗∗∗ −2.996∗∗∗ −0.011∗∗∗

(0.085) (0.026) (1.723) (0.506) (0.003)

Year 2018-19 −0.127 −0.003 −7.288∗∗∗ −3.343∗∗∗ −0.013∗∗∗

(0.096) (0.032) (1.627) (0.678) (0.004)

Monday −0.011∗ 0.003 −0.065 0.045 0.002
(0.006) (0.003) (0.082) (0.038) (0.003)

Saturday −0.025∗∗∗ 0.004 −0.093 −0.080∗∗∗ 0.002
(0.007) (0.002) (0.095) (0.030) (0.003)

Sunday −0.059∗∗∗ 0.008∗ −0.213∗∗ −0.067 0.002
(0.009) (0.005) (0.101) (0.045) (0.003)

Thursday −0.004 −0.002 0.043 0.043 0.004
(0.005) (0.002) (0.050) (0.026) (0.003)

Tuesday −0.003 0.001 0.020 0.017 0.008∗∗∗

(0.006) (0.002) (0.076) (0.039) (0.003)

Wednesday 0.007 −0.001 0.044 0.035 0.004
(0.005) (0.001) (0.064) (0.028) (0.003)

Date FE Y Y Y Y Y

Week FE×Plant FE Y Y Y Y Y

Observations 104,282 104,282 104,282 104,282 24,310
R2 0.996 1.000 0.714 0.850 0.245
Adjusted R2 0.996 1.000 0.706 0.845 0.151
Residual Std. Error 0.950 (df = 101321) 0.298 (df = 101323) 15.087 (df = 101322) 5.595 (df = 101322) 0.102 (df = 21621)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Long sample is from Oct. 22nd to Mar. 25th for 2013-14, 2014-15, 2016-17, 2017-18 and 2018-19;

and from Oct. 22nd to Mar. 24th, 2015-16 (because of the leap year).
Standard error is clustered at plant level.
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Table A8: Potential mechanisms, short sample.

Dependent variable:

Electricity Prod. (103 MWH) CO2 (tons) SO2 (103 tons) NOX (tons) AOD

(1) (2) (3) (4) (5)

EPA Furlough −0.029 0.009 0.713 0.161 0.022∗∗

(0.044) (0.022) (0.527) (0.194) (0.009)

Precipitation −0.000 0.000 −0.001 −0.002 −0.000
(0.001) (0.000) (0.008) (0.003) (0.000)

Temperature 0.005 0.001 −0.063 −0.018 −0.006∗∗∗

(0.004) (0.001) (0.040) (0.019) (0.001)

Dew Point −0.007∗∗ 0.001 0.038 0.004 0.004∗∗∗

(0.003) (0.001) (0.026) (0.020) (0.000)

Wind Speed −0.001 −0.001 −0.028 −0.002 −0.004∗∗∗

(0.002) (0.001) (0.021) (0.010) (0.001)

Steam Prod. (103 lbs.) −0.000∗∗∗

(0.000)

Heat Input (103 mmBtu) 0.090∗∗∗ 0.104∗∗∗ −0.131 0.082∗∗ 0.000
(0.008) (0.000) (0.143) (0.034) (0.001)

CO2 (103 tons) 0.149∗ 2.393∗ −0.011 −0.002
(0.076) (1.384) (0.313) (0.006)

Year 2014-15 −0.019 −0.004 −2.950∗∗∗ −0.876∗∗ −0.008∗∗

(0.083) (0.020) (0.884) (0.370) (0.004)

Year 2015-16 −0.143∗ 0.004 −5.430∗∗∗ −1.610∗∗∗ −0.011∗∗

(0.077) (0.019) (1.010) (0.387) (0.004)

Year 2016-17 −0.131 0.016 −7.549∗∗∗ −2.312∗∗∗ −0.011∗∗∗

(0.084) (0.025) (1.906) (0.463) (0.004)

Year 2017-18 −0.090 −0.007 −7.387∗∗∗ −3.050∗∗∗ −0.002
(0.091) (0.026) (1.873) (0.543) (0.005)

Year 2018-19 −0.146 0.013 −7.996∗∗∗ −3.420∗∗∗ −0.016∗∗∗

(0.101) (0.043) (2.015) (0.642) (0.005)

Monday −0.013 0.001 −0.052 0.053 0.009∗

(0.008) (0.002) (0.104) (0.048) (0.005)

Saturday −0.024∗∗∗ 0.002 −0.133 −0.085∗∗ 0.003
(0.008) (0.002) (0.094) (0.036) (0.005)

Sunday −0.058∗∗∗ 0.005∗ −0.311∗∗∗ −0.065 0.010∗∗∗

(0.011) (0.003) (0.108) (0.047) (0.004)

Thursday −0.001 −0.004 0.146∗∗ 0.077∗∗ 0.003
(0.005) (0.003) (0.071) (0.032) (0.004)

Tuesday −0.001 −0.001 0.106 0.039 0.003
(0.008) (0.002) (0.095) (0.047) (0.004)

Wednesday 0.005 −0.005∗ 0.118 0.038 0.006
(0.007) (0.003) (0.083) (0.038) (0.005)

Date FE Y Y Y Y Y

Week FE×Plant FE Y Y Y Y Y

Observations 63,528 63,528 63,528 63,528 11,274
R2 0.996 1.000 0.701 0.850 0.308
Adjusted R2 0.996 1.000 0.692 0.846 0.189
Residual Std. Error 0.980 (df = 61622) 0.316 (df = 61624) 15.687 (df = 61623) 5.717 (df = 61623) 0.095 (df = 9620)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Short sample is from Dec. 1st to Feb. 24th for 2013-14, 2014-15, 2015-16, 2016-17, 2017-18 and 2018-19.
Standard error is clustered at plant level.
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