### Strategic Local Regulators and the Efficacy of Uniform Pollution Standards

Ruohao Zhang<sup>1 2</sup> Neha Khanna<sup>3</sup>

<sup>1</sup>Kellogg School of Management, Northwestern University, Illinois
 <sup>2</sup>Pritzker School of Law, Northwestern University, Illinois
 <sup>3</sup>Department of Economics, SUNY Binghamton University, New York

January 2022

- Email: ruohao.zhang@kellogg.northwestern.edu
- Website: https://ruohaozhang.weebly.com
- **Y**Twitter: @zhang\_ruohao

# Motivation

- Local air quality depends on local regulators' efforts in regulating industry emissions.
- Federal EPA determines local violation status based on local monitor readings
- Violations to the national standard are subject to punishments on both local regulators and local economy (i.e., new pollution source review program, state implementation plan, withholding federal highway funding).
- After the revision of the  $PM_{2.5}$  national standard (NAAQS) in 2006
  - there are initially 208 non-attainment counties
  - 5 years later, only 17 counties switched to attainment

## Research Question

- Is a universal national air quality standard always effective, given that local jurisdictions control the investment of local regulation resources?
- How does a local regulator allocate investment of local regulation resources?
- How does the allocation of local regulation resources change in response to more stringent national standards?

### Economic Intuition

Local regulator's objective is to minimize:

 $\label{eq:cost} \begin{array}{l} \textit{Total Cost} = \textit{Indirect Regulation Cost} + \textit{Expected Cost of Pollution Damage} \\ \textit{age} + \textit{Expected Violation Penalties} \end{array}$ 

More plant-specific regulation resources from the local regulator means

- Higher direct regulation cost
- Less plant emissions → Lower cost of pollution damage
- Lower expected monitor readings → Lower probability of violation, lower expected violation penalties

#### Local Regulator's Problem

- Marginal Net Benefit of Emissions = Avoided marginal Direct Regulation Cost -Marginal Pollution Damage
- Marginal Cost of Emissions = Marginal Expected Violation Penalties



# Local Regulator's Response to More Stringent National Standard



Empirical Analysis: Monitor Level Analysis

U.S. EPA changed NAAQS "PM $_{2.5}$  24-hour Standard" from 65  $\mu g/m^3$  in 1997 to 35  $\mu g/m^3$  in 2006

- Monitor-by-Year data
  - 994 continuous monitors, active both before and after (including) 2006
  - 128 "Expected Violating Monitors": never complied after the revision (2007-2011)
  - 866 "Expected Compliant Monitors": complied for at least one year after revision (2007-2011)
  - Non-continuous (temporarily active) monitors are excluded from the monitor level analysis

- 日本 - 4 日本 - 4 日本 - 日本

# Empirical Analysis: Monitor Level Analysis





Zhang and Khanna.

## Empirical Analysis: Plant Level Analysis

- Plant-by-Year data
  - 33,848 plants from TRI
  - Greenstone (2002): map TRI chemicals to particulate matter
  - Compare plants near "Expected Violating Monitors" (793 plants) and plants near "Expected Compliant Monitors" (5,681 plants) with "Control Plants" (27,374 plants)
  - Here, "near" is defined by arbitrary distance threshold at 5KM



(a) Plants near "Expected Violating Monitors"  $% \left( {{\left[ {{{\mathbf{F}}_{{\mathbf{F}}}} \right]}_{{\mathbf{F}}}} \right)$ 



(b) Plants near "Expected Compliant Monitors"

イロト イロト イヨト イ

## Conclusion

- We propose a theoretical model to describe the strategic behavior of local regulators.
- Our theory suggests that when the national pollution standard is too expensive to comply with, local regulators may intentionally violate it.
- Instead of a universal national standard, it might be better to customize more achievable pollution standards for each area to avoid the intentional violation.

# Questions, Comments and Suggestions

Thank you!

- Email: ruohao.zhang@kellogg.northwestern.edu
- Working paper is available on my personal website: https://ruohaozhang.weebly.com/publications-working-papers.html

イロト 不得 トイヨト イヨト 二日

# Monitor Map



E

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

# Plant Map



E

イロト イロト イヨト イヨト

### Monitor Readings

$$m_j = \beta X_j + \sum_{i \in I_j} f(d_{ij})e_i + u_j, \tag{1}$$

 $m_j$ : readings of monitor J, captures the emissions from

- Local industry
- Other unregulated background economic activities (such as traffic and unregulated residential/commercial fuel combustion)
- $I_j$ : Industrial plants located near monitor j
- $e_i$ : emissions from plant i
- $d_{ij}$ : Distance between plant i and monitor j
- $u_j$ : Random component

Local Regulator's Problem: Expected Violation Penalty

Let s be the national standard, K is a fixed violation penalty,

- Violation if  $m_j > s$
- Compliance if  $m_j \leq s$

Expected monitor reading:

$$M_j = \beta X_j + \sum_{i \in I_j} f(d_{ij})e_i \tag{2}$$

Expected violation penalty:

$$(1 - Pr(m_j \le s))K = (1 - Pr(\beta X_j + \sum_{i \in I_j} f(d_{ij})e_i + u_j \le s))K$$
 (3)

#### Local Regulator's Problem: Other Costs

Local regulator determines the regulation resources on each plant i to reduce the plant emissions  $\boldsymbol{e}_i$ 

- Lower  $e_i$  requires more regulation resources
- Indirect regulation cost on plant *i*:  $C(e_i, \theta_i)$ , decrease in  $e_i$
- $\theta_i$  is the plant characteristics

Plant i's emissions  $e_i$  also cause local welfare loss

- Expected cost of pollution damage:  $G(M_j; \sigma_j)$ , increase in  $M_j$
- $\sigma_j$  is the socio-economic characteristics of the neighborhood around monitor j

$$\min_{e_i|i\in I_j} \sum_{i\in I_j} C(e_i;\theta_i) + G(M_j;\sigma_j) + \left(1 - Pr(m_j \le s)\right) K$$

$$= \sum_{i\in I_j} C(e_i,\theta_i) + G\left(\beta X_j + \sum_{i\in I_j} f(d_{ij})e_i;\sigma_j\right)$$

$$+ \left(1 - Pr(\beta X_j + \sum_{i\in I_j} f(d_{ij})e_i + u_j \le s)\right) K.$$
(4)

Zhang and Khanna.

# Indirect Regulation Cost

Indirect regulation cost function  $C(e_i, \theta_i)$  is defined according to a oneto-one monotonic mapping between plant optimal emissions  $e_i$  to plantspecific regulation cost.



イロト イボト イヨト イヨト

### Empirical Analysis: Monitor Level Analysis

|                                                          | Outcome Variable: $log(annual PM_{2.5} monitor readings, \mu g/m^3)$ |                                                 |                                                       |                                                 |
|----------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|
| Independent Variables                                    | (1)                                                                  | (2)                                             | (3)                                                   | (4)                                             |
| Revision $\times$ Expected Violating                     | $0.190^{***}$<br>(0.055)                                             | $0.080^{**}$<br>(0.037)                         | $\begin{array}{c} 0.181^{***} \\ (0.051) \end{array}$ | $0.078^{**}$<br>(0.037)                         |
| Expected Violating Monitors                              | $\begin{array}{c} 0.077 \\ (0.117) \end{array}$                      | $\begin{array}{c} 0.144 \\ (0.113) \end{array}$ | $\begin{array}{c} 0.067 \\ (0.117) \end{array}$       | $\begin{array}{c} 0.146 \\ (0.113) \end{array}$ |
| Population Density (100 people per $\mathrm{KM}^2$ )     |                                                                      |                                                 | $\begin{array}{c} 0.004^{*} \\ (0.002) \end{array}$   | -0.003<br>(0.024)                               |
| Income per Capita (\$1,000)                              |                                                                      |                                                 | -0.002<br>(0.002)                                     | -0.001<br>(0.001)                               |
| GDP per Capita (\$1,000)                                 |                                                                      |                                                 | $\begin{array}{c} 0.0002 \\ (0.001) \end{array}$      | $0.002^{**}$<br>(0.001)                         |
| County FE                                                | Ν                                                                    | Υ                                               | Ν                                                     | Υ                                               |
| Year FE                                                  | Y                                                                    | Υ                                               | Υ                                                     | Υ                                               |
| R <sup>2</sup><br>Adjusted R <sup>2</sup><br>Sample size | 0.110<br>0.109<br>7,395                                              | 0.819<br>0.801<br>7,395                         | 0.132<br>0.131<br>7,347                               | 0.819<br>0.802<br>7,347                         |

Table 3: Monitor Level Analysis: Difference-in-differences Results

Note: Standard errors are clustered at the state level. There are fewer observations in column (3) and (4) because of missing social-economic variables for some counties. Significance level: \*\*\* p < .01, \*\* p < .05, \* p < .1.

13/14

3

イロト イボト イヨト イヨト

### Empirical Analysis: Plant Level Analysis

|                                                    | Dependent variable:                 |                |  |
|----------------------------------------------------|-------------------------------------|----------------|--|
|                                                    | log(PM + 0.1), PM emissions in lbs. |                |  |
|                                                    | (1)                                 | (2)            |  |
| Near Expected Violating Monitors $\times$ Revision | 0.106**                             | 0.106**        |  |
|                                                    | (0.053)                             | (0.051)        |  |
| Near Expected Compliant Monitors × Revision        | $-0.086^{***}$                      | $-0.084^{***}$ |  |
| · · · · · · · · · · · · · · · · · · ·              | (0.022)                             | (0.022)        |  |
| Non attainment County                              |                                     | 0.024          |  |
| Non-actainment County                              |                                     | (0.022)        |  |
|                                                    |                                     |                |  |
| Number of all EPA Inspection                       |                                     | -0.017         |  |
|                                                    |                                     | (0.013)        |  |
| Air Emission Ratio                                 |                                     | 0.908***       |  |
|                                                    |                                     | (0.067)        |  |
| Population Density (100 people per $KM^2$ )        |                                     | 0.055          |  |
| ropulation benaty (100 people per RM )             |                                     | (0.038)        |  |
| · · · · · · · · · · · · · · · · · · ·              |                                     |                |  |
| Income per Capita (\$1,000)                        |                                     | -0.002         |  |
|                                                    |                                     | (0.002)        |  |
| GDP per Capita (\$1,000)                           |                                     | 0.002***       |  |
|                                                    |                                     | (0.001)        |  |
| Plant FE                                           | Y                                   | Y              |  |
|                                                    |                                     |                |  |
| Year FE                                            | Y                                   | Y              |  |
| Observations                                       | 229,436                             | 227.229        |  |
| $\mathbb{R}^2$                                     | 0.891                               | 0.895          |  |
| Adjusted R <sup>2</sup>                            | 0.872                               | 0.877          |  |

Table 4: Plant Level Analysis: Difference-in-differences Results

Note: For dependent variable, we add 0.1 to PM before taking natural logs to avoid losing observations with PM = 0. Standard errors are clustered at the state level. There are fewer observations in column (2) because of missing social-economic variables for some counties. Significance level: "\*  $\mathbf{p} < .01$ , "  $\mathbf{p} < .05$ , "  $\mathbf{p} < .1$ .

3